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A RESTRICTION NORM PROBLEM FOR SIEGEL MODULAR FORMS

GILLES FELBER

Abstract. We establish an asymptotic formula with a power-saving error of the L
2-norm of Siegel

cusp forms of degree 2 in an average sense when restricted to the imaginary axis. The result is
consistent with the Mass Equidistribution Conjecture for Siegel modular forms and the Lindelöf
Hypothesis for some twisted Koecher-Maass series. Along the way, we perform a careful analysis
of the Kitaoka formula of degree 2.

1. Introduction

Given a Riemannian manifold, a general question in analysis is to understand the size of the
eigenfunctions of the associated Laplace-Beltrami operator. This can be investigated in different
ways. For example, one can consider the distribution of mass of the function [S] or the relations
between Lp-norms. It is also interesting to investigate the restriction of a function to some subman-
ifold [BGT]. Generally, these questions are difficult and only stated as conjectures. A particularly
interesting case is the one of an arithmetic manifold that is a symmetric space equipped with a
family of Hecke operators. These commute with the Laplace-Beltrami operator and thus provide
additional symmetries. It is then sometimes possible to have a better understanding of the situation
than in the general case. It also links these questions to arithmetic problems.

In this paper, we investigate a similar setting for holomorphic Siegel modular forms of degree
2. These are the natural generalization of holomorphic modular forms for SL2(Z) to the symplectic
group Sp4(Z). For a general introduction, see [Kl] or [F]. Let H(2) denote the space of 2×2 symmetric
complex matrices Z = X + iY with the imaginary part positive definite, which we denote by Y > 0.
On this space, the symplectic group Sp4(Z) acts in a analogous way to SL2(Z). We consider the
restriction L2-norm of a Siegel modular form to the imaginary axis iP(R), where P(R) := {Y > 0}.
Namely, for a Hecke cusp form f ∈ S

(2)
k of even weight k we define

N(f) :=
π2

90‖f‖22

∫

SL2(Z)\P(R)

|f(iY )|2 det(Y )k
dY

det(Y )3/2
.(1.1)

Here dY
det(Y )3/2

is the invariant measure over P(R). In Equation (2.1), we describe the measure-

preserving isomorphism

P(R) ∼= H× R>0.(1.2)

The group SL2(Z) acts on P(R) by U ·Y = U tY U and this action is mapped by the isomorphism to
the usual action on H. We use the standard measures on the quotients SL2(Z)\H and Sp4(Z)\H(2).
In particular, these are not probability measures. The factor

Vol(Sp4(Z)\H(2))

Vol(SL2(Z)\H)
=

π3/270

π/3
=

π2

90

takes this into account in the definition. We state the period formula for this norm. Let Λ be a set
of all the spectral components in the decomposition of L2(SL2(Z)\H). It consists of the constant
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2 GILLES FELBER

function, Eisenstein series and an orthonormal basis of Hecke-Maass cusp forms and is equipped
with a measure dφ (see Section 1.1 for more details). We denote by Λev the subset of Λ consisting
of even functions.

Proposition 1.1 ([BC], Proposition 1). Let L(f × φ, s) be the Dirichlet series defined in Equation
(2.2) and G(f × φ, s) the corresponding gamma factor. Then

N(f) =
π2

2880‖f‖22

∫ ∞

−∞

∫

Λev

|L(f × φ, 1/2 + it)G(f × φ, 1/2 + it)|2dφ dt.

We state now the main theorem of this article. Let w : R→ R>0 be a smooth test function with

support in [1, 2], ω =
∫ 2

1
w(x)x3dx and B

(2)
k be a Hecke eigenbasis of the Siegel cusps forms of weight

k and degree 2. We define the following average over B
(2)
k and k:

Nav(K) :=
17280

ωK4

∑

k∈2N

w

(

k

K

)

∑

f∈B
(2)
k

N(f).(1.3)

The constant in front is motivated by |B(2)
k | ∼ k3

8640 and takes into account an extra factor 1
2

because we restrict ourselves to even k. We follow [Ki] in this restriction on k.

Theorem 1.2. Let ǫ > 0. We have

Nav(K) = 4 log(K) + C +Oǫ(K
−1/2+ǫ),

for an explicit constant C that only depends on w.

A similar problem was considered by Blomer and Corbett in [BC]. There the average was done

over a subspace of S
(2)
k consisting of the Saito-Kurokawa lifts. These are lifts coming from half-

integral weight modular forms in the Kohnen’s plus space S+
k−1/2(4). The latter is in bijection

with its Shimura lift to the classical modular forms S2k−2. This allows the authors to reduce some
computation to half-integral weight forms. The present text follows some ideas of that article and
diverges from it at the application of a trace formula. In the latter, a relative trace formula for pairs
of Heegner points is used, where here we use the Kitaoka formula, a generalization of the Petersson
trace formula to higher degree Siegel modular forms. Nevertheless, some ideas remain valid in both
cases and the careful reader can spot similarities along the whole article.

The result, and especially the constant 4, are interesting in two aspects. First, it fits in the
more general question of Quantum Unique Ergodicity and its holomorphic counterpart, the Mass
Equidistribution Conjecture [HS]. The latter is widely unknown for Siegel modular forms of degree
bigger than 1. Still, one could hope it holds and even that a similar result is valid on a submanifold
in the spirit of [Y1]. A heuristic argument is developed in [BC] and shows the coherence of the
constant 4 with the Mass Equidistribution Conjecture. In another direction, the result can be seen
as an average version of the Lindelöf Hypothesis for the Dirichlet series of Proposition 1.1. Although
these series are not L-functions, as they lack an Euler product representation, one could still hope
that the Lindelöf Hypothesis holds.

The proof relies on two trace formulas. The most important one is the Kitaoka formula for degree
2 forms, presented in Theorem 2.1 (see also [Ki], [B] Section 3). The general shape of the formula
is similar to the Petersson formula, but the non-diagonal terms are given by a sum over integral
matrices C. To simplify the analysis, the non-diagonal terms are split into matrices of ranks 1
and 2. Most difficulties arise for the rank 2 term, which features a generalized Bessel function of
matrix argument (see also [H]). The analysis of this involves, after averaging over k, an analysis of
an oscillating integral and a careful count of matrices with close eigenvalues. The rank 1 term is
simpler, because we understand the involved Bessel function. Nevertheless, we have to develop a
non-trivial argument because a simple count of the number of terms with trivial bounds would not
give us a power saving.
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The main term of Theorem 1.2 is given by the diagonal term of the Kitaoka formula. For that
part of the argument, we use the pre-trace formula to compute the spectral integral in Proposition
1.1. We have to carefully count the terms on the geometric side of it to get a power saving. This
corresponds to a bound on the number of Heegner points close to the boundary of a fundamental
domain of SL2(Z)\H. The average over k is not used in this part and is only computed at the end.
The dependence of C on w in Theorem 1.2 arises there and is explicit. We also point out that the
restriction to Hecke eigenfunctions, both for the Siegel and the Maass forms does not play a role in
the two formulas. It is used to get a self-dual approximate functional equation. We believe that the
main results of this article hold without this condition.

The structure of the paper is the following. We begin by the proof of Proposition 1.1. After that,
we can averageN(f) and apply the Kitaoka formula. This is the content of Section 2. After gathering
some technical lemmas in Section 3, we deal with the diagonal term and the pre-trace formula in
Section 4. Sections 5 and 6 consist of the analysis of respectively the rank 1 and rank 2 terms in the
Kitaoka formula. In Appendix A, we provide a table with all the GL2(Z)-automorphisms of reduced
positive definite quadratic forms and prove its correctness. This is used in the computation of the
pre-trace formula for the even spectrum.

1.1. Notations and normalizations. We fix a few notations and normalize some objects in this
section. What is written here is valid everywhere unless stated otherwise.

The set P(R) consists of every 2 by 2 symmetric positive definite matrices and P(Z) is the subset
of elements with integral diagonal and half-integral non-diagonal elements. In particular iP(R)
corresponds to the imaginary axis of H(2), i.e. the set of matrices with purely imaginary coordinates
in H(2). A matrix

(

a b
b c

)

in P(Z) (sometimes written ( x y
y z ) or (

α β
β δ )) corresponds to a positive definite

binary quadratic forms ax2+2bxy+ dy2. Such a form is weakly reduced if 2|b| ≤ a ≤ d. It is reduced
if, moreover,

2|b| = a or a = d =⇒ b ≥ 0.

We always use the notation coming from matrices and do not introduce the alternative notations
used for quadratic forms. In particular, we consider the determinant of the matrix but never the
discriminant of the associated quadratic form.

A matrix Y ∈ P(Z) also corresponds to a point zY in H, see Equation 2.1. The usual fundamental
domain of SL2(Z)\H is {z = x + iy ∈ C | −1/2 ≤ x ≤ 1/2, |z| ≥ 1}. A weakly reduced matrix Y
corresponds to a point in this domain. If Y is reduced and the corresponding point is on the edge
of the fundamental domain, then this point has non-positive real part.

Let ℓ = k − 3/2 and f ∈ S
(2)
k be a Siegel cusp form of weight k and degree 2. We only consider

even weights. The Fourier series of f is normalized in the following way:

f(Z) =
∑

T∈P(Z)

a(T ) det(T )ℓ/2e(tr(TZ)).

The set of spectral components is denoted by Λ and Λev is the subset of even forms. The eigenvalue
of φ ∈ Λ is λφ and tφ is the spectral parameter, given by λφ = 1

4 + t2φ. The constant function has

spectral parameter i/2. We write
∫

Λ for the integral over the spectrum with the corresponding

measure, that is
dtφ
4π for the continuous part and the counting measure for the discrete part. The

symbol Γ is only used for the gamma function and the modular group is designated by SL2(Z). We
use the common notation e(z) = e2πiz and the Vinogradov symbols ≪, ≫, ≍ and ∼.

Finally, we always assume that k and K are large enough and ǫ > 0 is small enough to avoid
degenerate cases. We may change the value of ǫ from a display to the next, as long as the new ǫ is
a constant multiple of the first one.

1.2. Acknowledgments. I would like to thank Valentin Blomer for his supervision of this project,
his help to understand their article with A. Corbett and his constant support. I am also thankful to
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Edgar Assing, Farrell Brumley, Bart Michels, Raphael Steiner and Radu Toma for the enlightening
discussions and advice.

2. Restriction norm

In this section, we prove Proposition 1.1 and introduce the Kitaoka formula. Most of the compu-
tations done here are well known and can be found in [BC], [B] and other sources. We gather these
results for convenience of the reader and provide detailed proofs of some of them. First, we describe
in more detail the isomorphism (1.2). It is given by sending a matrix corresponding to a point in
H to the matrix times its transpose. The other direction is given by sending a reduced positive
quadratic form to the corresponding Heegner point. The last line is an explicit computation of the
map.

H× R>0
∼= SO(2)\ SL2(R)× R>0

∼−→ P(R),
(SO(2) · g, r) 7→ r · gtg,

(

−b+ i
√

det(M)

a
, det(M)

)

←[ M =

(

a b
b c

)

,

(x+ iy, r) 7→
√
r

(

y−1 −xy−1

−xy−1 y−1(x2 + y2)

)

.(2.1)

This isomorphism preserves the measures
(

dxdy
y2 , dr

r

)

7→ dY
det(Y )3/2

and the action of SL2(Z).

Therefore we can take the quotient on both sides and write

N(f) =
π2

90‖f‖22

∫

SL2(Z)\H

∫ ∞

0

|f(z, r)|2 dr
r

dx dy

y2
,

where (z, r) ∈ H × R>0 corresponds to a point in P(R). If Y is in P(Z), the corresponding point
zY ∈ H is called a Heegner point.

2.1. Spectral decomposition and Dirichlet series. We now use the spectral decomposition of
L2(SL2(Z)\H). We denote by Λ a set of spectral components. For any g ∈ L2(SL2(Z)\H), we have
the spectral decomposition g(z) =

∫

Λ〈g, φ〉φ(z)dφ. We also have Parseval’s identity
∫

SL2(Z)\H
|g(z)|2dx dy

y2
=

∫

Λ

|〈g, φ〉|2dφ.

We wrote f(z, r) as a function of z ∈ H and r > 0. LetM(f)(z, r) denote the Mellin transform
with respect to r. We apply Parseval’s identity to the z variable and the Mellin transform to the r
variable. This gives

∫

SL2(Z)\H

∫ ∞

0

|f(z, r)|2 dr
r

dx dy

y2
=

∫

Λ

∫ ∞

0

|〈f(·, r), φ〉|2 dr
r
dφ

=

∫

Λ

M
(

|〈f(·, 0), φ〉|2
)

(0)dφ

=

∫

Λ

1

2πi

∫

(0)

|〈M(f)(·, s), φ〉|2ds dφ.

We used the formula M(|g|2)(0) = 1
2πi

∫

(0)
|M(g)(s)|2ds which is Parseval’s theorem for the

Mellin transform. Therefore the norm rewrites

N(f) =
π2

90‖f‖22
1

2πi

∫

(0)

∫

Λ

|〈M(f)(·, s), φ〉|2dφ ds =
π2

90‖f‖22
1

2π

∫ ∞

−∞

∫

Λ

|〈M(f)(·, 1/2+it), φ〉|2dφ dt.
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The change of real part of the integral in the Mellin transform is valid and gives us nicer symmetry
below. This Mellin transform can be computed explicitly. We define the twisted Koecher-Maass
series

L(f × φ, s) :=
∑

T∈P(Z)/PSL2(Z)

a(T )

ǫ(T ) det(T )1/4+s
φ(zT ),(2.2)

where a(T ) is the T -th Fourier coefficient of f and ǫ(T ) = #{U ∈ PSL2(Z) | U tTU = T } is the
number of automorphisms of T . The corresponding gamma factor is

G(f × φ, s) = G(tφ, k, s) := 4(2π)−(k−1)−2sΓ

(

ℓ

2
+ s+

itφ
2

)

Γ

(

ℓ

2
+ s− itφ

2

)

.

Recall that ℓ = k− 3/2 and that tφ is the spectral parameter of φ. The series L(f ×φ, s) extends
to an entire function that is bounded in vertical strips and we have the functional equation

Λ(f × φ, s) := L(f × φ, s)G(f × φ, s) = L(f × φ, 1− s)G(f × φ, 1− s).

However, it does not have an Euler product. The Mellin transform of f is computed in [BC],
Section 6. The result is

〈M(f)(·, (k − 1)/2 + s), φ〉 =
∫ ∞

0

〈f(·, r), φ〉r k−1
2 +s dr

r
=

√
π

4
L(f × φ̄, s)G(f × φ̄, s).

For odd φ, the scalar product inside the r-integral vanishes. For even Hecke-Maass cusp forms
φ, we have φ̄ = φ and for Eisenstein series, |L(f × φ, s)| = |L(f × φ̄, s)|. Inserting this in the norm
gives us

N(f) =
π2

2880‖f‖22

∫ ∞

−∞

∫

Λev

|Λ(f × φ, 1/2 + it)|2dφ dt.

This concludes the proof of Proposition 1.1.

2.2. Approximate functional equation. Now, we want to evaluate the series L(f × φ, s) on the
critical line using its Dirichlet series. For this, we compute an approximate functional equation.
Note that if f and φ are Hecke eigenfunctions, then L(f × φ, s) = L(f × φ, s̄) for cusp forms and
the constant function and

L(f × E(·, 1/2 + iτ), s) = L(f × E(·, 1/2− iτ), s̄) = ν(1/2− iτ)L(f × E(·, 1/2 + iτ), s̄)

for Eisenstein series, where

ν(s) = π1/2Γ(s− 1/2)

Γ(s)

ζ(2s− 1)

ζ(2s)
=

π−(1−s)Γ(1− s)ζ(2(1 − s))

π−sΓ(s)ζ(2s)
.

Let νφ be ν(1/2 − iτ) with ν as above if φ an Eisenstein series and 1 if φ is a cusp form or the

constant function. Then νφφ(z) = φ̄(z) and L(f × φ, s) = νφL(f × φ, s̄). Consider

I(f × φ, s) =
1

2πi

∫

(3)

ev
2

Λ(f × φ, v + s)Λ(f × φ̄, v + 1− s)
dv

v

=
1

2πi

∫

(3)

ev
2

νφΛ(f × φ, v + s)Λ(f × φ, v + 1− s)
dv

v
.

We take s = 1/2 + it. The integrand has no poles except for v = 0 and decays rapidly at ∞.
Moving the path of integration to Re(v) = −3, we get

I(f×φ, 1/2+it) =
1

2πi

∫

(−3)

ev
2

νφΛ(f×φ, v+1/2+it)Λ(f×φ, v+1/2−it)
dv

v
+ |Λ(f×φ, 1/2+it)|2.
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Using the functional equation of Λ(f × φ, s), we get

1

2πi

∫

(−3)

ev
2

νφΛ(f × φ, v + 1/2 + it)Λ(f × φ, v + 1/2− it)
dv

v

=
1

2πi

∫

(−3)

ev
2

νφΛ(f × φ,−v + 1/2− it)Λ(f × φ,−v + 1/2 + it)
dv

v

= − 1

2πi

∫

(3)

ev
2

νφΛ(f × φ, v + 1/2− it)Λ(f × φ, v + 1/2 + it)
dv

v

= −I(f × φ, 1/2 + it).

We conclude that |Λ(f × φ, 1/2+ it)|2 = 2I(f × φ, 1/2+ it). Now, we expand the Dirichlet series
of L(f × φ, s) at s = v + 1

2 + it:

I(f × φ, s) =
1

2πi

∫

(3)

ev
2

G(f × φ, v + 1/2 + it)G(f × φ, v + 1/2− it)

·
∑

T,Q∈P(Z)/PSL2(Z)

a(T )a(Q)

ǫ(T )ǫ(Q) det(TQ)1/4+v+1/2

(

det(Q)

det(T )

)it

φ(zT )φ̄(zQ)
dv

v

=
∑

T,Q∈P(Z)/PSL2(Z)

a(T )a(Q)

ǫ(T )ǫ(Q) det(TQ)3/4
φ(zT )φ̄(zQ)

·
(

det(Q)

det(T )

)it
1

2πi

∫

(3)

ev
2

G(f × φ, v + 1/2 + it)G(f × φ, v + 1/2− it) det(TQ)−v dv

v
.

This gives for the norm

N(f) =
π2

1440

∑

T,Q∈P(Z)/PSL2(Z)

1

ǫ(T )ǫ(Q) det(TQ)3/4

∫

Λev

∫ ∞

−∞

(

det(Q)

det(T )

)it

· 1

2πi

∫

(3)

ev
2

G(tφ, k, v + 1/2 + it)G(tφ, k, v + 1/2− it)(x1x2)
−v dv

v
dt φ(zT )φ̄(zQ)dφ

· a(T )a(Q)

‖f‖22
.

Note that only the last term depends on f (for a fixed k).

2.3. Average and Kitaoka formula. We consider Nav as defined in Equation (1.3). This is
amenable to the Kitaoka formula. We begin by stating it. All notations are defined below. We
take the description of all the functions from [B], Section 3. More details are given there for the
interested reader.

Theorem 2.1 (Kitaoka, [Ki]). Let k ≥ 6, B
(2)
k be a basis for the space of Siegel modular forms of

degree 2 and even weight k. Then

ck
∑

f∈S(2)
k

af (T )af (Q)

‖f‖22
= δQ∼T#Aut(T )

+
∑

±

∑

c,s≥1

∑

U,V

(−1)k/2
√
2π

c3/2s1/2
H±(UQU t, V −1TV −t; c)Jℓ

(

4π
√

det(TQ)

cs

)

+ 8π2
∑

det(C) 6=0

K(Q, T ;C)

| det(C)|3/2Jℓ(TC
−1QC−t).
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Remark. This theorem generalizes Petersson formula to Siegel modular forms of degree 2. It is
proved similarly by considering inner products of Poincaré series. On the right-hand side, the three
terms are called, in order, the diagonal term, the rank 1 and the rank 2 terms. In these latter, we
only use trivial bounds on the generalized Kloosterman sums H± and K. This is because we have
short s, c and C sums up to some negligible errors.

We define the symbols appearing in the theorem. First, we have the constants

ck = 2
√
π(4π)3−2kΓ(k − 3/2)Γ(k − 2)

and ℓ = k − 3/2. We write Q ∼ T if Q and T are equivalent as quadratic forms, i.e. there exists
M ∈ GL2(Z) such that Q = M tTM . The set Aut(T ) = {M ∈ GL2(Z) | T = M tTM} consists of all
automorphisms of T in GL2(Z).

In the rank one term, we sum over integers c, s and matrices

U ∈
{(

∗ ∗
0 ∗

)}

\GL2(Z), V ∈ GL2(Z)/

{(

1 ∗
0 ∗

)}

We define

P = UQU t =
(

p1 p2/2
p2/2 p4

)

, S = V −1TV −t =
(

s1 s2/2
s2/2 s4

)

.

Suppose that the bottom right entries of P and S are both equal to s. In that case, we define

H±(P, S; c) := δp4=s4

∑∗

d1 mod c

∑

d2 mod c

e

(

d̄1s4d
2
2 ∓ d̄1p2d2 + s2d2 + d̄1p1 + d1s1

c
∓ p2s2

2cs4

)

.

Here
∑∗

means that the sum is on d1 coprime to c. We have the trivial bound |H±(P, S, c)| ≤ c2.

The function Jℓ is the Bessel function of the first kind.
For the degree 2 term, C ∈M2(Z) runs over all matrices with non-zero determinant. We define

K(Q, T ;C) :=
∑

e(tr(AC−1Q+ C−1DT )),

where the sum is over matrices (A ∗
C D ) in a system of representatives of Γ∞\ Sp4(Z)/Γ∞ for a fixed

C, where Γ∞ = {( 1 X
0 1 ) ∈ Sp4(Z)}. A trivial bound is |K(Q, T ;C)| ≤ | det(C)|3/2. The function Jℓ

is a generalized Bessel function defined in the following way. Let P be a diagonizable matrix with
positive eigenvalues s21, s

2
2 (s1, s2 > 0). Then

Jℓ(P ) :=

∫ π/2

0

Jℓ(4πs1 sin(θ))Jℓ(4πs2 sin(θ)) sin(θ)dθ.

2.4. Cut-off. We define

V (x1, x2, τ, k) :=

∫ ∞

−∞

(

x2

x1

)it
1

2πi

∫

(3)

ev
2

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)(x1x2)

−v dv

v
dt.

(2.3)

With this definition, we rewrite the norm in a compact way:

N(f) =
π2

1440

∑

T,Q∈P(Z)/PSL2(Z)

1

ǫ(T )ǫ(Q) det(TQ)3/4

·
∫

Λev

V (det(T ), det(Q), tφ, k)φ(zT )φ̄(zQ)dφ
a(T )a(Q)

‖f‖22
.(2.4)
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Lemma 2.2. Let x1, x2 > 0, τ ∈ C such that | Im(τ)| ≤ 2, k big enough and A > 0. The function
V satisfies the following bounds:

(

x1√
k

)j1 ( x2√
k

)j2

k
1
2 j3+j4

dj1

dxj1
1

dj2

dxj2
2

dj3

dτ j3
dj4

dkj4
V (x1, x2, τ, k)

≪A,j1,j2,j3,j4k
2
(

1 +
x1x2

k4

)−A (

1 + k1/2| log(x2/x1)|
)−A

(

1 +
|τ |2
k

)−A

.(2.5)

Remark. This lemma is similar to Equations (10.5) in [BC]. There is an error there in the derivatives
of x1 and x2. The integral over t add an extra k1/2 term for each derivative. Note that the term is
corrected when used later in Section 10.

Proof. We can bound G using the decay of the Γ function. We establish the relevant bounds in the
next section. First, we consider the inner integral

V1(x, t, τ, k) =
1

2πi

∫

(3)

ev
2

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)x−v dv

v

where x > 0 and the other variables are as above. We prove

xj1k
1
2 j2+

1
2 j3+j4

dj1

dxj1

dj2

dtj2
dj3

dτ j3
dj4

dkj4
V1(x, t, τ, k)≪A,j1,j2,j3,j4 k3/2

(

1 +
x

k4

)−A
(

1 +
t2 + |τ |2

k

)−A

.

(2.6)

This is similar to Equation (9.16) in [BC]. All the derivatives except the one in x are already
treated in Lemma 3.2. First, we move the v-integral to a large real part Re(v) = A. Then we apply
Lemma 3.2 and integrate by parts.

xj dj

dxj
V1(x, t, τ, k)

=
1

2πi

∫

(A)

ev
2

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)x−v(−v) . . . (−v − j + 1)

dv

v

=
1

2πi

∫

(A)

ev
2

GA(k, t, τ, v)x
−v(−v) . . . (−v − j + 1)

dv

v
+OA(k

−A)

≪A k3/2+4A 1

2πi

∫

(A)

e−|v|2
(

1 +
t2 + |τ |2 + Im(v)2

k

)−A

x−A|v| . . . |v + j − 1|dv|v| +OA(k
−A)

≪A,j k
3/2
( x

k4

)−A
(

1 +
t2 + |τ |2

k

)−A

.
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Now, we move the v-integral to Re(v) = − 1
4 . If j = 0, we pick up a pole at v = 0.

xj dj

dxj
V1(x, t, τ, k)

=
1

2πi

∫

(−1/4)

ev
2

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)x−v(−v) . . . (−v − j + 1)

dv

v

=
1

2πi

∫

(−1/4)

ev
2

GA(k, t, τ, v)x
−v(−v) . . . (−v − j + 1)

dv

v
+ δj0GA(k, t, τ, 0) +OA(k

−A)

≪A k1/2
1

2πi

∫

(−1/4)

e−|v|2
(

1 +
t2 + |τ |2 + Im(v)2

k

)−A

x1/4|v| . . . |v + j − 1|dv|v|

+ k1/2
(

1 +
t2 + |τ |2 + Im(v)2

k

)−A

+ OA(k
−A)

≪A k3/2
(

( x

k4

)1/4

+ δj0

)(

1 +
t2 + |τ |2

k

)−A

.

We conclude that Equation (2.6) holds. We consider now the t-integral. The only derivatives
that we need to consider are the ones in x1 and x2. First, we integrate by parts.

V (x1, x2, τ, k) =

∫ ∞

−∞

(

x2

x1

)it

V1(x1x2, t, τ, k)dt

=

∫ ∞

−∞
(i log(x2/x1))

−j

(

x2

x1

)it
dj

dtj
V1(x1x2, t, τ, k)dt

≪A,j k
3/2(k1/2| log(x2/x1)|)−j

(

1 +
x1x2

k4

)−A
∫ ∞

−∞

(

1 +
t2 + |τ |2

k

)−A

dt

≪A,j k
2(k1/2| log(x2/x1)|)−j

(

1 +
x1x2

k4

)−A
(

1 +
|τ |2
k

)−A

.

Considering j = 0 and j = A, we get the correct result for j1 = j2 = 0 in Equation (2.5). If we
differentiate with respect to x1 or x2, we get an extra factor 1

x1
resp. 1

x2
and another factor of size

either 1 or k1/2. We conclude that the result holds. �

3. Technical lemmas

We gather here various estimates and lemmas for the rest of the article. Most of them come from
Section 6 of [BC].

3.1. Gamma factors.

Lemma 3.1 ([BC], Lemma 22). Let k ≥ 1, s = σ + it such that k + σ ≥ 1/2 and A ∈ N, i, j ∈ N0.
Then

Γ(k + s)

Γ(k)
= ksGA,σ(k, t) +OA,σ((k + |t|)−A),

where

kj1+j2/2
dj1

dkj1
dj2

dtj2
GA,σ(k, t)≪A,σ,j1,j2

(

1 +
t2

k

)−A

.

Moreover,

Γ(k + s)

Γ(k)
= ks exp

(

− t2

2k

)(

1 +Oσ

( |t|
k

+
t4

k3

))

.
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Lemma 3.2 ([BC], similar to Corollary 23). Let A ≥ 0, σ ≥ −1/4, t ∈ R, τ ∈ C such that
| Im(τ)| ≤ 2 and k ∈ 2N. Then

c
−1/2
k G(τ, k, σ + 1/2 + it)≪A,σ k2σ+3/4

(

1 +
t2 + |τ |2

k

)−A

We also have, for v ∈ C,

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it) = GA(k, t, τ, v) +ORe(v),A(k

−A),

where

kj1+j2/2+j3/2
dj1

dkj1
dj2

dtj2
dj3

dτ j3
GA(k, t, τ, v)≪A,j1,j2,j3,Re(v) k

3/2+4Re(v)

(

1 +
t2 + |τ |2 + Im(v)2

k

)−A

.

Moreover, for t, τ ≪ k1/2+ǫ, we have

c−1
k G(τ, k, 1/2 + it)G(τ, k, 1/2− it) =

2

π5/2
k3/2 exp

(

−4t2 + τ2

k

)

(

1 +O(k−1/2+ǫ)
)

.

Proof. Using the Legendre duplication formula, Γ(z)Γ(z + 1/2) = 21−2z
√
πΓ(2z), we get

ck = 2
√
π(4π)3−2kΓ(k − 3/2)Γ(k − 2)

= 2
√
π(4π)3−2k22k−7/2−2π−1Γ

(

k − 3/2

2

)

Γ

(

k − 1/2

2

)

Γ

(

k − 2

2

)

Γ

(

k − 1

2

)

= 2−1(2π)5/2−2kΓ

(

k − 3/2

2

)

Γ

(

k − 1/2

2

)

Γ

(

k − 2

2

)

Γ

(

k − 1

2

)

.

Taking the square of the gamma factor, this gives

c−1
k G(τ, k, σ + 1/2 + it)2 =

24(2π)−2k−4σ−4it

2−1(2π)5/2−2k

Γ
(

k−1/2
2 + σ + it+ iτ

2

)2

Γ
(

k−1/2
2 + σ + it− iτ

2

)2

Γ
(

k−3/2
2

)

Γ
(

k−1/2
2

)

Γ
(

k−2
2

)

Γ
(

k−1
2

)

= 25(2π)−4(σ+it)−5/2
Γ
(

k−1/2
2 + σ + it+ iτ

2

)2

Γ
(

k−1/2
2 + σ + it− iτ

2

)2

Γ
(

k−3/2
2

)

Γ
(

k−1/2
2

)

Γ
(

k−2
2

)

Γ
(

k−1
2

)

.

Applying Lemma 3.1, we get

≪A,σ (k/2)4σ+1/2+0+3/4+1/4

(

1 +
(t+ τ)2

k

)−A

≪A,σ k4σ+3/2

(

1 +
t2 + |τ |2

k

)−A

.

This gives the first formula. Similarly, for the second formula, we compute

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)

= 25(2π)−4v−5/2
Γ
(

k−1/2
2 + v + it+ iτ

2

)

Γ
(

k−1/2
2 + v + it− iτ

2

)

Γ
(

k−3/2
2

)

Γ
(

k−1/2
2

)

·
Γ
(

k−1/2
2 + v − it+ iτ

2

)

Γ
(

k−1/2
2 + v − it− iτ

2

)

Γ
(

k−2
2

)

Γ
(

k−1
2

)

= 25(2π)−4v−5/2(k/2)4v+3/2GA,σ(k, t, τ, Im(v)) +OA,σ

(

(k + |t|+ |τ |)−A
)

,
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where GA,σ is the combination of the functions GA,σ in Lemma 3.1 for the four ratios of gamma
functions. We have the following properties for the GA,σ function:

kj1+j2/2+j3/2
dj1

dkj1
dj2

dtj2
dj3

dτ j3
GA,σ(k, t, τ, Im(v))≪A,σ,j1,j2,j3

(

1 +
Im(v)2 + t2 + |τ |2

k

)−A

.

We used that if k ≪ Im(v)2 + t2 + |τ |2, then k ≪ (Im(v)± t± τ)2 for one of the choices of signs.
The last equation comes from the corresponding formula in Lemma 3.1. We get

c−1
k G(τ, k, 1/2 + it)G(τ, k, 1/2− it)

= 25(2π)−5/2
Γ
(

k−1/2
2 + it+ iτ

2

)

Γ
(

k−1/2
2 + it− iτ

2

)

Γ
(

k−1/2
2 − it+ iτ

2

)

Γ
(

k−1/2
2 − it− iτ

2

)

Γ
(

k−3/2
2

)

Γ
(

k−1/2
2

)

Γ
(

k−2
2

)

Γ
(

k−1
2

)

= 25(2π)−5/2(k/2)3/2 exp

(

−2(t+ τ/2)2 + 2(t− τ/2)2

k

)

(

1 +O(k−1/2+ǫ)
)

=
2k3/2

π5/2
exp

(

−4t2 + τ2

k

)

(

1 +O(k−1/2+ǫ)
)

.

�

3.2. The J Bessel function and the spectral integral. Concerning the J Bessel function, we
need the estimates

Jk(x)≪1, Jk(x)≪
(x

k

)k

, Jk(x)≪x−1/2.(3.1)

The first two are valid for x > 0 and k > 2 and the last one for x ≥ 2k as stated in Equations (4.1),
(4.2) and (4.3) of [B]. Moreover Equation (4.7) in the same article says that the product of two
Bessel functions can be rewritten in the following way:

Jk(4πs1 sin(α))Jk(4πs2 sin(α)) =
1

π
Re

(

e

(

−k + 1

4

)∫ ∞

0

e

(

(s21 + s22)t+
sin(α)2

t

)

Jk(4πs1s2t)
dt

t

)

.

(3.2)

The following lemma is used to take advantage of the average over k.

Lemma 3.3 ([BC], Lemma 20 and the remark after). Let x > 0, A ≥ 0, K > 1, w : R→ C smooth
with support in [1, 2], such that w(j)(x)≪ǫ K

jǫ. Then there exist smooth functions w0, w− and w+

such that for all j ∈ N0, we have

∑

k even

ikw

(

k

K

)

Jk−3/2(x) = w0(x) + eixw+(x) + e−ixw−(x)

and

w0(x)≪A K−A,

dj

dxj
w±(x)≪j,A

(

1 +
K2

x

)−A
1

xj

Moreover, if w depends on other parameters with control over the derivatives, so do w±. We also
have w0(x), w±(x)≪ x−1/2.

We state a general upper bound for the spectral integral.

Lemma 3.4. Let z1, z2 ∈ H with Im(z1), Im(z2)≫ T and T ≥ 1. Then
∫

Λev

|tφ|≪T

|φ(z1)φ(z2)|dφ≪A T
√

Im(z1) Im(z2).
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Proof. We apply the Cauchy-Schwarz inequality. We get
∫

Λev

|tφ|≪T

|φ(z1)φ(z2)|dφ≪
∫

Λ
|tφ|≪T

|φ(z1)φ(z2)|dφ

≪
(

∫

Λ
|tφ|≪T

|φ(z1)|2dφ
)1/2(

∫

Λ
|tφ|≪T

|φ(z2)|2dφ
)1/2

.

We bound the two terms with Proposition 15.8 in [IK]. The hypothesis gives

≪
(

T 2 + T Im(z1)
)1/2 (

T 2 + T Im(z2)
)1/2

≪ T
√

Im(z1) Im(z2).

�

3.3. Stationary phase. We state in this section two lemma from [BKY] about estimates on oscil-
lating integral. Let w be a smooth function with support on [α, β] and h be a smooth functions on
[α, β]. We want to bound the integral

I =

∫ ∞

−∞
w(t)eih(t)dt.

This depends on the vanishing of h′ in the interval [α, β].

Lemma 3.5 ([BKY], Lemma 8.1). Let Y ≥ 1, X,U,R,Q > 0. Suppose that

w(j)(t)≪j XU−j, for j = 1, 2, . . .

|h′(t)| ≥ R,

h(j)(t)≪j Y Q−j, for j = 2, 3, . . .

Then

I ≪A (β − α)X [(QR/
√
y)−A + (RU)−A].

Lemma 3.6 ([BKY], Proposition 8.2). Let 0 < δ < 1/10, X,U, Y,Q > 0, Z = Q+X+Y +β−α+1
be such that

y ≥ Z‘3δ, β − α ≥ U ≥ QZδ/2

√
Y

.

Suppose that

w(j)(t)≪j XU−j, for j = 0, 1, . . .

h′′(t)≫ Y Q−2,

h(j)(t)≪j Y Q−j, for j = 1, 2, . . .

and that there exists a unique t0 ∈ [α, β] such that h′(t0) = 0. Then

I ≪ QX√
Y
.

4. Diagonal term

In this section, we compute the diagonal term of the Kitaoka formula, where T ∼ Q. We have in
particular that det(T ) = det(Q) and ǫ(T ) = ǫ(Q). For this, we combine Equations (1.3) and (2.4)
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with the Kitaoka formula. The equation for the diagonal term simplifies to

Ndiag
av (K) =

12π2

ωK4

∑

k∈2N

w

(

k

K

)

∑

T∈P(Z)/PSL2(Z)

#Aut(T )

ǫ(T )2 det(T )3/2

·
∫

Λev

V (det(T ), det(T ), tφ, k) |φ(zT )|2 dφ.

We deal with this expression in the following steps. First, we analyze the spectral integral using
the pre-trace formula. This requires a non-trivial argument and takes up most of this section. In
particular, we need to count Heegner points close to the edge of the fundamental domain and take
care of the restriction to the even spectrum. After that, the rest of the summations and estimations
is handled. We finish by the computation of the average over k, which we do not take advantage of
for this term.

We fix some notations for this section. Let T be a reduced positive definite matrix of determinant
D. It corresponds to a Heegner zT in the fundamental domain via Equation (2.1). We use the
notation

T =

(

α β
β δ

)

←→ zT =
−β + i

√
D

α
.

4.1. The pre-trace formula. We apply the pre-trace formula (see for example [I], Section 10.1).
At first, we do not take the even spectrum into account. It gives

∫

Λ

V (det(T ), det(T ), tφ, k) |φ(zT )|2 dφ =
∑

γ∈SL2(Z)

κ(u(zT , γzT )).

The function κ is the Harish-Chandra inverse of V and it only depends on the point pair invariant

u(z1, z2) = |z1−z2|2
4 Im(z1) Im(z2)

. We keep these notations in this chapter. Recall that T is reduced, so

2|β| ≤ α ≤ δ and the decay properties of V give D ≪ k2+ǫ, up to a negligible error. In particular, z
is in the classical fundamental domain of Γ\H. For the edge of the domain, we pick the pieces with
Re(z) ≤ 0. The goal of the following subsections is to prove the following theorem

Theorem 4.1. For all ǫ > 0, we have

∑

T∈P(Z)/PSL2(Z)

#Aut(T )

ǫ(T )2 det(T )3/2

∫

Λ

V (det(T ), det(T ), τ, k) |φ(zT )|2 dφ

=
∑

T∈P(Z)/PSL2(Z)

2#Aut(T )

ǫ(T ) det(T )3/2
κ(0) +Oǫ(k

2.5+ǫ),(4.1)

If we reduce to the even spectrum, we get

∑

T∈P(Z)/PSL2(Z)

#Aut(T )

ǫ(T )2 det(T )3/2

∫

Λev

V (det(T ), det(T ), τ, k) |φ(zT )|2 dφ

=
∑

T∈P(Z)/PSL2(Z)

(

#Aut(T )

ǫ(T )

)2
1

2 det(T )3/2
κ(0) +Oǫ(k

2.5+ǫ),

Remark. We will see that the term with κ(0) is of size k3 log(k). The two equations tells us that,
on average over T , the terms on the spectral side with u 6= 0 are of lower size.

To get κ, we want to compute the Harish-Chandra inverse transform of the function h(τ) =
V (det(T ), det(T ), τ, k). We know that this function of τ is even, decays exponentially and is holo-
morphic in the strip | Im(τ)| ≤ 2. Therefore it is suitable for the Harish-Chandra inversion. A first
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way to get κ in terms of h is given by (1.62’) in [I]:

κ(u) =
1

4π

∫ ∞

−∞

1

π

∫ π

0

(2u+ 1 + 2
√

u(u+ 1) cos(θ))−
1
2−iτdθ h(τ)τ tanh(πτ)dτ.

At u = 0, we get

κ(0) =
1

4π

∫ ∞

−∞
V (det(T ), det(T ), τ, k)τ tanh(πτ)dτ.(4.2)

For u ≪ 1, the θ-integral is of size ≪ 1 because 2u + 1 − 2
√

u(u+ 1) is bounded away from 0.
Using the cut-off of V given in Equation (2.5) and τ tanh(τ) = |τ |+O(1), we get a trivial bound

κ(u)≪A k2
(

1 +
det(T )2

k4

)−A ∫ ∞

−∞

(

1 +
|τ |2
k

)−A

dτ ≪A k3
(

1 +
det(T )2

k4

)−A

.(4.3)

We also need the following lemma.

Lemma 4.2 ([I], Lemma 2.11). Let z ∈ H with Im(z) ≥ 1/10 and X > 0. We have

#{γ ∈ SL2(Z) | u(z, γz) < X} ≪
√

X(X + 1) Im(z) +X + 1,

#{γ ∈ SL2(Z) | u(z, γ(−z̄)) < X} ≪
√

X(X + 1) Im(z) +X + 1.

Remark. Note that in our case, Im(zT ) =
√
D
α ≪ k1+ǫ up to a negligible error.

4.2. Decay of the Harish-Chandra inverse transform. We do not restrict to the even spectrum
at first. In this section, we prove a strong decay bound for κ(u) when u is big enough.

Lemma 4.3. Let ǫ > 0, A > 0, T ∈ P(Z) with det(T ) ≪ k2+ǫ and zT ∈ H the Heegner point
corresponding to T via Equation (2.1). Then

∑

γ∈SL2(Z)

u(zT ,γzT )≥k−1+ǫ

|κ(u(zT , γzT ))| ≪A,ǫ k
−A.

Proof. We apply the usual three steps to get the Harish-Chandra inverse transform (see (1.64) in
[I]). This gives

g(r) =
1

2π

∫ ∞

−∞
eirτV (det(T ), det(T ), τ, k)dτ,

q(v) =
1

4π

∫ ∞

−∞
V (det(T ), det(T ), τ, k)(

√
v + 1 +

√
v)2iτdτ,

κ(u) =
1

4π2i

∫ ∞

u

1√
v − u

∫ ∞

−∞
V (det(T ), det(T ), τ, k)

(
√
v + 1 +

√
v)2iτ

√

v(v + 1)
τdτ dv.

We recall the decay property of V with respect to τ , as written in Equation (2.5):

dj

dτ j
V (det(T ), det(T ), τ, k)≪A,j k

2−j/2

(

1 +
det(T )2

k4

)−A(

1 +
|τ |2
k

)−A

.

Let h(τ) = V (det(T ), det(T ), τ, k). We consider first q(v). Since h is holomorphic in a strip, we
can move the integration line to τ 7→ τ + 2i:
∫ ∞

−∞
h(τ)τ(

√
v + 1+

√
v)2iτdτ = (

√
v + 1 +

√
v)−4

∫ ∞

−∞
h(τ + 2i)(τ + 2i)(

√
v + 1+

√
v)2iτdτ.
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Integrating by parts, we get

4πq(v) = (
√
v + 1 +

√
v)−4

∫ ∞

−∞
h(τ + 2i)(τ + 2i)(

√
v + 1 +

√
v)2iτdτ

= (
√
v + 1 +

√
v)−4(−2i log(

√
v + 1 +

√
v))−1

·
∫ ∞

−∞
(h′(τ + 2i)(τ + 2i) + h(τ + 2i))(

√
v + 1 +

√
v)2iτdτ

= (
√
v + 1 +

√
v)−4(−2i log(

√
v + 1 +

√
v))−j

·
∫ ∞

−∞
(h(j)(τ + 2i)(τ + 2i) + jh(j−1)(τ + 2i))(

√
v + 1 +

√
v)2iτdτ

≪A,j (
√
v + 1+

√
v)−4

(

log(
√
v + 1 +

√
v)
√
k
)−j

k2(k + j
√
k)

(

1 +
det(T )2

k4

)−A

.

In particular, we have a saving in k if log(
√
v + 1+

√
v)≫ k−1/2+ǫ/2. Since log(

√
v + 1+

√
v) =√

v +O(v3/2) for small v, this happens if v or u is ≫ k−1+ǫ. We obtain

q(v)≪A,j (
√
v + 1 +

√
v)−4k3−jǫ/2

(

1 +
det(T )2

k4

)−A

.

Then

κ(u)≪A,j k
3−jǫ/2

(

1 +
det(T )2

k4

)−A ∫ ∞

u

dv
√

v(v + 1)(v − u)(
√
v + 1 +

√
v)4

.

We split the integral in the intervals ]u, u+ 1[ and [u+ 1,∞[. We get

∫ ∞

u

dv
√

v(v + 1)(v − u)(
√
v + 1 +

√
v)4
≪ 1
√

u(u+ 1)(
√
u+ 1 +

√
u)4

∫ u+1

u

dv√
v − u

+

∫ ∞

u+1

dv

v3

=
2

√

u(u+ 1)(
√
u+ 1 +

√
u)4

+
1

2(u+ 1)2
.

If u≫ 1, then we obtain

2
√

u(u+ 1)(
√
u+ 1 +

√
u)4

+
1

2(u+ 1)2
≪ 1

u2
.

If u≪ 1, then we have 1 + u ≍ 1 and

2
√

u(u+ 1)(
√
u+ 1 +

√
u)4

+
1

2(u+ 1)2
≪ 1√

u
+ 1.

In summary, for u≫ k−1+ǫ, we computed

κ(u)≪A,jk
3−jǫ/2

(

1 +
det(T )2

k4

)−A
1

u2
if u≫ 1,

κ(u)≪A,jk
3−jǫ/2

(

1 +
det(T )2

k4

)−A

if u≪ 1.

Applying Lemma 4.2, we sum over γ. For k−1+ǫ ≪ uT ≪ 1, we have

∑

γ∈SL2(Z)

k−1+ǫ≪u(zT ,γzT )≪1

|κ(u(zT , γzT ))| ≪A,j k
4.5−jǫ/2

(

1 +
det(T )2

k4

)−A
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So for j big enough, we can cancel all the powers of k. For u≫ 1, we split into dyadic intervals.
We can begin the sum at say 1. For X ≫ 1, we have

√

X(X + 1) Im(z) +X + 1≪ Xk1+ǫ. We get

∑

γ∈SL2(Z)
u(zT ,γzT )≥1

|κ(u(zT , γzT ))| =
∞
∑

n=0

∑

u∈[2n,2n+1[

κ(u)

≪
∞
∑

n=0

2nk1+ǫκ(2n)

≪A,j

∞
∑

n=0

k4+ǫ−jǫ/2

(

1 +
det(T )2

k4

)−A

2−n

≪A,jk
4+ǫ−jǫ/2

(

1 +
det(T )2

k4

)−A

.

We take j big enough to conclude the proof. �

Now, note that for a Heegner point z = −β+i
√
D

α , γ =
(

a b
c d

)

and z 6= γz, we have

u(z, γz) =
|z − γz|2

4 Im(z) Im(γz)
=
|z(cz + d)− (az + b)|2

4 Im(z)2

=
(cβ2 − cD − (d− a)αβ − bα2)2 + (−2cβ

√
D + (d− a)α

√
D)2

4α2D
.

In the last line, if the second square is non-zero, we get u(z, γz)≫ D
α2D ≫ 1

α2 . If it is zero, then
2cβ = (d− a)α. Moreover, the first square is non-zero, since z 6= γz. The first square simplifies then

to (cβ2−cD−(d−a)αβ−bα2)2 = (−c(β2+D)−bα2)2 = α2(−cδ−bα)2. Thus u(z, γz)≫ α2

α2D ≫ 1
D

in that case. Up to a negligible error, we get that for zT 6= γzT ,

u(zT , γzT )≫ min

(

1

α2
,
1

D

)

≫ k−2−ǫ.

It remains to deal with the zT and γ such that k−2−ǫ ≪ u≪ k−1+ǫ.

4.3. Orbits of Heegner points. In this section, we count the zT and γ such that u(zT , γzT ) ≪
k−1+ǫ. This gives the error term in Equation (4.1). For this, we analyze the distribution of Heegner
points and their orbits. Recall that they lie in the classical fundamental domain for a corresponding
reduced matrix. We obtain the following result:

Lemma 4.4. Let zT be the Heegner point corresponding to the matrix T . Then

∑

T∈P(Z)/PSL2(Z)

det(T )≪k2+ǫ

#Aut(T )

ǫ(T )2 det(T )3/2

∑

γ∈SL2(Z):

k−2−ǫ≪u(zT ,γzT )≪k−1+ǫ

|κ(u(zT , γzT ))| ≪ǫ k
2.5+ǫ.

Proof. Since u(zT , γzT ) is smaller than 1, we have that κ(u(z, γz))≪ k3 by Equation (4.3). Com-

bining this with #Aut(T )
ǫ(T )2 ≪ 1, we see that we only have to show that

∑

T∈P(Z)/PSL2(Z)

det(T )≪k2+ǫ

1

det(T )3/2

∑

γ∈SL2(Z):

k−2−ǫ≪u(zT ,γzT )≪k−1+ǫ

1≪ k−1/2+ǫ

to get a bound of size O(k2.5+ǫ) for Equation (4.1). Geometrically, it is clear that zT must be close
to an edge of the fundamental domain if we want it to be close to another point in its orbit. We
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make this more precise. There are 2 types of Heegner points such that u(zT , γzT ) is small. First,
suppose zT has big imaginary part, say Im(zT ) > 10. For a translation γz = zT +n, n ∈ Z, we have

u(zT , zT + n) =
n2

4 Im(zT )2
=

n2α2

4D
.

Therefore if u(zT , zT + n) ≪ k−1+ǫ, we get n2 ≪ D
α2k1−ǫ . To compute a bound, we sum over

D′ = αδ ≍ D ≪ k2+ǫ. For a fixed D′, there are ≪ (D′)ǫ/4 choices for α and δ by the divisor bound
and there are α choices for β, so that

∑

T∈P(Z)/PSL2(Z)

det(T )≪k2+ǫ

1

det(T )3/2

∑

γ∈SL2(Z) translation

k−2−ǫ≪u(zT ,γzT )≪k−1+ǫ

1≪
∑

D′≪k2+ǫ

(D′)−3/2
∑

αδ=D′

∑

|β|≤α/2

∑

n2≪ D′

α2k1−ǫ

1

≪
∑

D′≪k2+ǫ

(D′)−3/2+ǫ/4
∑

αδ=D′

α

√

D′

α2k1−ǫ

≪ǫk
−1/2+ǫ/2

∑

D′≪k2+ǫ

(D′)−1+ǫ/4

≪ǫk
−1/2+ǫ

If Im(zT ) > 10 and γ is not a translation, then |zT | ≍ Im(zT ) and Im(γzT ) ≤ 1. Therefore
|zT − γzT | ≫ Im(zT )− Im(γzT ) ≍ |zT | and

u(zT , γzT ) =
|zT − γzT |2

4 Im(zT ) Im(γzT )
≫ |zT |2

Im(zT )
≫ |zT | ≫ 1.

So there is no such γ with u(zT , γzT )≪ k−1+ǫ. Now, we analyze low-lying Heegner points where
Im(zT ) ≤ 10. Note that we have |zT |2 = δ

α ≍ 1. If γ is a translation, then the computation above
shows that u(z, γz)≫ 1. Since the Heegner points are in the fundamental domain and we ruled out
the case where γ is a translation, Im(γzT ) ≤ 1. Hence

u(zT , γzT ) =
|zT − γzT |2

4 Im(zT ) Im(γzT )
≫ |zT − γzT |2.

Any point in the orbit of zT is at least as far as the point zT /|zT | (in the Euclidean distance), as
one can see by growing a circle around zT . Suppose that |zT | − 1≫ k(−1+ǫ)/2, then we have

|zT − zT /|zT ||2 =
|zT |2
|zT |2

||zT | − 1|2 ≫ k−1+ǫ,

so this rules out this case. Now, if |zT | − 1≪ k(−1+ǫ)/2, that means

k(−1+ǫ)/2 ≫ |zT | − 1 ≍ (|zT | − 1)(|zT |+ 1) = |zT |2 − 1 =
δ − α

α
.

So that δ−α≪ k(−1+ǫ)/2α. In particular, α ≍ δ and δ2 ≍ det(T )≪ k2+ǫ. Clearly, for such a zT ,

there is a finite number of γ such that u(zT , γzT )≪ k−1+ǫ (at most 12 when zT is close to ±1+i
√
3

2 ,
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for k big enough). Counting such T and γ gives us

∑

T∈P(Z)/PSL2(Z)

det(T )≪k2+ǫ

1

det(T )3/2

∑

such γ∈SL2(Z)

k−2−ǫ≪u(zT ,γzT )≪k−1+ǫ

1≪
∑

δ≪k1+ǫ

δ−3
∑

α
δ−α≪k(−1+ǫ)/2δ

∑

|β|≤α/2

1

≪
∑

δ≪k1+ǫ

δ−3
∑

α
δ−α≪k(−1+ǫ)/2δ

α

≪
∑

δ≪k1+ǫ

δ−1k(−1+ǫ)/2

≪k−1/2+ǫ

�

This concludes the proof of Equation (4.1). We combine Lemma 4.3 and Lemma 4.4 and get the
correct error term. For the term u = 0, the set {γ ∈ SL2(Z) | zT = γzT } has size 2ǫ(T ) since it is
its lift from PSL2(Z).

4.4. The even spectrum. In this section, we prove the second equation of Theorem 4.1. Let T−1

be the −1 Hecke operator acting by T−1φ(z) = φ(−z̄). We have

(id+T−1)φ(z) =

{

2φ(z) if φ is even,

0 if φ is odd.

This tells us that
∫

Λev

V (det(T ), det(T ), tφ, k)|φ(zT )|2dφ

=
1

4

∫

Λ

V (det(T ), det(T ), tφ, k)
(

|φ(zT )|2 + |φ(−zT )|2 + 2Re(φ(zT )φ(−zT ))
)

dφ.

If z is a Heegner point, then so is −zT . So we can consider Equation (4.1) when we repace |φ(zT )|2
by φ(z)φ(−z̄). We apply the trace formula again and we consider first the term with u = 0.

The points zT and −zT are both in the classical fundamental domain. Therefore if there exists
γ ∈ SL2(Z) such that γ(−zT ) = z, that means that zT = −zT or that zT is on the edge of the
fundamental domain. In all these cases, there is a γ0 such that γ0(−zT ) = zT . This gives 3
possibilities: β = 0 if zT = −zT , and β = − 1

2 or |zT | = 1 otherwise. There γ0 is respectively id,
(

1 −1
0 1

)

and
(

0 1
−1 0

)

. We can post-compose with any γ such that γzT = zT . Therefore the term

φ(zT )φ(−zT ) has the same number of γ with u = 0 as the terms |φ(zT )|2 and |φ(−zT )|2. As above,
the set {γ ∈ SL2(Z) | zT = γzT} has size 2ǫ(T ). If there is such a γ0, we get in total 8ǫ(T )

4 = 2ǫ(T )
terms for u = 0. If there is no γ0 such that γ0(−zT ) = zT , then the term φ(zT )φ(−zT ) has no
term with u = 0 on the geometric side of the pre-trace. Therefore we only get ǫ(T ). Looking at
the table in Appendix A.1, we see that the ratio between #Aut(T ) and ǫ(T ) is 4 if γ0 exists and

2 otherwise. Thus we can write this contribution as #Aut(T )
2 . If we combine this with the factor

#Aut(T )
ǫ(T )2 in Equation (4.1), we get in total

1

2

(

#Aut(T )

ǫ(T )

)2

,

as in the second equation of Theorem 4.1.
We consider now the case u 6= 0. The only thing that matters in the error term of Equation (4.1)

above is the distance u(z1, z2) between the two points in the trace formula. If u(zT , γ(−zT )) ≫
k−1+ǫ, then we conclude as in Lemma 4.3 using the decay of κ and Lemma 4.2. The other case is
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when u(zT , γ(−zT )) ≪ k−1+ǫ. We adapt the proof of Lemma 4.4. As before, the Heegner points
that are close to the boundary of the fundamental domain contribute. For translations, we have

u(zT ,−zT + n) =
|2Re(zT )− n|2

4 Im(zT )2
=
| − 2β/α− n|2α2

4D
.

Since |βα | ≤ 1
2 , this is similar to the case above. The only special case is if n = 1 and β

α is really

close to − 1
2 . There we have

u(zT ,−zT + 1) =
(α+ 2β)2

D
.

If it is not zero, the square must be at least 1 since α and 2β are integers. We get α − 2|β| ≪√
Dk−1+ǫ. We compute the number of possible zT by fixing D′ = αδ, getting α via the divisor

bound and counting the possibilities for β. We get

∑

T∈P(Z)/PSL2(Z)

k−2−ǫ≪u(zT ,−zT+1)≪k−1+ǫ

1

det(T )3/2
≪

∑

D′≪k2+ǫ

(D′)−3/2+ǫ/4
√
D′k−1+ǫ

≪k−1/2+ǫ/2
∑

D′≪k2+ǫ

(D′)−1+ǫ/4 ≪ k−1/2+ǫ.

For a low-lying zT , the argument above works since we only considered the distance between zT

and zT
|zT | . The last case is zT being close to −zT . We have there u(zT ,−zT ) = Re(zT )2

Im(zT )2 = β2

D , so

β2 ≪ Dk−1+ǫ. We count

∑

T∈P(Z)/PSL2(Z)

k−2−ǫ≪u(zT ,−zT )≪k−1+ǫ

1

det(T )3/2
≪

∑

D′≪k2+ǫ

(D′)−3/2+ǫ/4
√
D′k−1+ǫ ≪ k−1/2+ǫ.

We see that these cases go in the error term too. This concludes the proof of Theorem 4.1.

4.5. Main term of the pre-trace formula. We now analyze the term with u = 0 of the pre-trace
formula. Applying Theorem 4.1, we have

Ndiag
av (K) =

12π2

ωK4

∑

k∈2N

w

(

k

K

)

∑

T∈P(Z)/PSL2(Z)

(

#Aut(T )

ǫ(T )

)2
1

2 det(T )3/2
κ(0) +O(K−1/2+ǫ),

with κ(0) given in Equation (4.2). The error term is the combination of Theorem 4.1 and trivial
estimates. In Appendix A, we calculate all the automorphisms of T in GL2(Z). At the end of it, a

table summarizes the computation. We see that 1
2 (

#Aut(T )
ǫ(T ) )2 is 2 except if T =

(

α β
β δ

)

is diagonal,

α = δ or α = 2|β|. In these cases the ratio is equal to 8. Recall the definition of V in Equation
(2.3). For T = Q, the only part that depends on T is det(T )−2v for Re(v) > 0. We consider

∑

T∈P(Z)/PSL2(Z)

(

#Aut(T )

ǫ(T )

)2
1

2 det(T )3/2+2v

= 2
∑

T∈P(Z)/PSL2(Z)

1

det(T )3/2+2v
+ 6

∑

T∈P(Z)/PSL2(Z)
#Aut(T ) 6=2ǫ(T )

1

det(T )3/2+2v

=: 2L(v) + 6L̃(v).

Lemma 4.5. The function L̃(v) converges for Re(v) > −1/4 and is bounded on vertical strips.
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Proof. Let σ = Re(v). First, we consider the case of T diagonal. We have

∑

T∈P(Z)/PSL2(Z)
T diagonal

1

det(T )3/2+2v
=

∑

0<α≤δ

1

(αδ)3/2+2v
≪ ζ(3/2 + 2σ)2.

Therefore this sum converges for all σ > −1/4 and is bounded on vertical strips. The two other
cases are similar:

∑

T∈P(Z)/PSL2(Z)
α=δ

1

det(T )3/2+2v
=

∑

0≤2β≤δ
0<δ

1

(δ2 − β2)3/2+2v
≪
∑

0<δ

1

δ2+4σ
≪ ζ(2 + 4σ),

∑

T∈P(Z)/PSL2(Z)
α=2|β|

1

det(T )3/2+2v
=

∑

0<2β≤δ

1

(2βδ − β2)3/2+2v
≪
∑

0<δ

1

δ3/2+2σ

∑

0<β

1

β3/2+2σ
≪ ζ(3/2 + 2σ)2.

Note that these three cases are not disjoint. This is important if one want to estimate the values
of L̃ explicitly. �

To study L(s), we need the following lemma.

Lemma 4.6 ([BC], remark after Lemma 12). Let

h̃(D) := #{T ∈ P(Z)/PSL2(Z) | det(T ) = D}

be the class number of the determinant D (corresponding to the discriminant −4D) We have

∑

D≤X

h̃(D) =
4π

9
X3/2 −X +O(X3/4).

Remark. Note that in [BC], we have h̃(D) = h(−4D). Hence X must be replaced by 4X between
the result there and here.

Lemma 4.7. The function L(v) converges for Re(v) > 0 and can be meromorphically extended to
Re(v) > −1/4 with a unique pole at v = 0 of residue π

3 . The extension is bounded on vertical strips
and away from the pole.

Proof. We have

L(s) =
∑

T∈P(Z)/PSL2(Z)

1

det(T )3/2+2v
=
∑

0<D

h̃(D)

D3/2+2v
.

This converges for Re(v) > 0. Let X > 0. Summing the Dirichlet series by parts, we get

∑

D≤X

h̃(D)

D3/2+2v
=
∑

D≤X

h̃(D)X−3/2−2v + (3/2 + 2v)

∫ X

1

∑

D≤t

h̃(D)
dt

t5/2+2v

=





∑

D≤X

h̃(D)X−3/2−2v − 4π

9
X−2v



+ (3/2 + 2v)

∫ X

1





∑

D≤t

h̃(D)− 4π

9
t3/2





dt

t5/2+2v

+
4π

9
X−2v + (3/2 + 2v)

∫ X

1

4π

9
t−1−2vdt.(4.4)

The last integral is

(3/2 + 2v)

∫ X

1

4π

9
t−1−2vdt = −(3/2 + 2v)

4π

9

X−2v − 1

2v
.
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For Re(v) > 0, the limit as X →∞ converges to 4π
9

3/2+2v
2v . Finally,

lim
X→∞





∑

D≤X

h̃(D)X−3/2−2v − 4π

9
X−2v



 = lim
X→∞

(X−1/2−2v +O(X−3/4−2v)) = 0

In total, we have that

(3/2 + 2v)

∫ ∞

1





∑

D≤t

h̃(D)− 4π

9
t3/2





dt

t5/2+2v
+

4π

9

3/2 + 2v

2v

converges for Re(v) > − 1
4 and v 6= 0. It is an meromorphic continuation of L(v) with a unique pole

of residue Resv=0 L(v) =
π
3 and it is bounded on vertical strips and away from v = 0. �

Now, we consider the T -sum combined with the v-integral of Equation (2.3).

∑

T∈P(Z)/PSL2(Z)

(

#Aut(T )

ǫ(T )

)2
1

2 det(T )3/2

· 1

2πi

∫

(3)

ev
2

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it) det(T )−2v dv

v

=
1

2πi

∫

(3)

ev
2

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)(2L(v) + 6L̃(v))

dv

v
.

Note that the integrand has a double pole at v = 0. We have the following Taylor expansion for the
gamma factor:

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it) = c−1

k G(τ, k, 1/2 + it)G(τ, k, 1/2− it)
[

1 + v

(

∑

±±

Γ′

Γ

(

k − 1/2

2
± it± iτ

2

)

− 4 log(2π)

)

+ O(v2)

]

.

Recall that according to Equation (2.5), the t and τ -integral can be cut at k1/2+ǫ up to a negligible

error. Moreover, Γ′

Γ (z) = log(z) +O(|z|−1) so that for t, τ ≪ k1/2+ǫ,

∑

±±

Γ′

Γ

(

k − 1/2

2
± it± iτ

2

)

− 4 log(2π) =
∑

±±
log((k − 1/2)/2± it± iτ/2)− 4 log(2π) +O(k−1)

= 4 log(k) + C0 +O(k−1/2+ǫ),

for some constant C0 ∈ R. Let C1 = limv→0(L(v)− π
3v ) be the constant term of the Laurent series

of L(v). In conclusion, the pole at v = 0 of the integrand has residue

c−1
k G(τ, k, 1/2 + it)G(τ, k, 1/2− it)

(

2π

3

(

4 log(k) + C0 +O(k−1/2+ǫ)
)

+ 2C1 + 6L̃(0)

)

.

We define D = 2π
3 C0 + 2C1 + 6L̃(0). We move the v-integral to Re(v) = −1/4 + ǫ for some fixed

ǫ > 0:

1

2πi

∫

(3)

ev
2

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)(2L(v) + 6L̃(v))

dv

v

= c−1
k G(τ, k, 1/2 + it)G(τ, k, 1/2− it)

(

8π

3
log(k) +D +O(k−1/2+ǫ)

)

+
1

2πi

∫

(−1/4+ǫ)

ev
2

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)(2L(v) + 6L̃(v))

dv

v
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We apply the bounds of Lemma 3.2 to the second term to get

1

2πi

∫

(−1/4+ǫ)

ev
2

c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)(2L(v) + 6L̃(v))

dv

v

≪Ak
1/2+4ǫ

∫ ∞

−∞
e−w2

(

1 +
t2 + |τ |2 + w2

k

)−A

(|L(−1/4 + ǫ+ iw)|+ |L̃(−1/4 + ǫ+ iw)|)dw

≪Ak
1/2+4ǫ

(

1 +
t2 + |τ |2

k

)−A

.

Using Lemma 3.2 and τ tanh(πτ) = |τ | +O(1), we get

12π

ωK4

∑

k∈2N

w

(

k

K

)∫ ∞

−∞

∫ ∞

−∞

1

2πi

∫

(−1/4+ǫ)

ev
2

· c−1
k G(τ, k, v + 1/2 + it)G(τ, k, v + 1/2− it)(2L(v) + 6L̃(v))

dv

v
dtτ tanh(πτ)dτ

≪AK
−3

∫ ∞

−∞

∫ ∞

−∞
K1/2+4ǫ

(

1 +
t2 + |τ |2

k

)−A

dtτ tanh(πτ)dτ

≪K−3 ·K1/2+4ǫ ·K1/2 ·K ≪ K−1+4ǫ.

Therefore we conclude that

Ndiag
av (K) =

12π2

ωK4

∑

k∈2N

w

(

k

K

)

1

4π

∫ ∞

−∞

∫ ∞

−∞
c−1
k G(τ, k, 1/2 + it)G(τ, k, 1/2− it)

·
(

8π

3
log(k) +D +O(k−1/2+ǫ)

)

dtτ tanh(τ)dτ +O(K−1/2+ǫ)

=
3π

ωK4

∑

k∈2N

w

(

k

K

)∫ ∞

−∞

∫ ∞

−∞
c−1
k G(τ, k, 1/2 + it)G(τ, k, 1/2− it)dtτ tanh(τ)dτ

·
(

8π

3
log(k) +D +O(k−1/2+ǫ)

)

+O(K−1/2+ǫ).

Now, we compute an approximation of the t-integral using Lemma 3.2. We also replace the
gamma factors outside t, τ ≪ k1/2+ǫ. This gives an error of size OA(k

−A) for all A > 0, so it is
negligible. We get
∫ ∞

−∞
c−1
k G(τ, k, 1/2 + it)G(τ, k, 1/2− it)dt =

2

π5/2
k3/2

∫ ∞

−∞
exp

(

−4t2 + |τ |2
k

)

(

1 +O(k−1/2+ǫ)
)

dt

+OA(k
−A)

=
2

π5/2
k3/2
√
πk

2
exp

(

−|τ |
2

k

)

(

1 +O(k−1/2+ǫ)
)

=
1

π2
k2 exp

(

−|τ |
2

k

)

+O(k3/2+ǫ)

We compute the τ -integral using τ tanh(τ) = |τ |+O(1). This gives
∫ ∞

−∞
exp(−τ2/k)τ tanh(τ)dτ = 2

∫ ∞

0

exp(−τ2/k)(τ +O(1))dτ

= − k exp(−τ2/k)
∣

∣

∞
0

+O(
√
k)

= k +O(
√
k).
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We conclude that
∫ ∞

−∞

∫ ∞

−∞
c−1
k G(τ, k, 1/2 + it)G(τ, k, 1/2− it)dtτ tanh(τ)dτ =

1

π2
k2(k +O(

√
k)) +O(k3/2+ǫ)

=
1

π2
k3 +O(k2.5+ǫ).

4.6. Sum over k. Recall that ω =
∫ 2

1 w(x)x3dx. We saw above that the diagonal term is

Ndiag
av (f) =

3π

ωK4

∑

k∈2N

w

(

k

K

)

1

π2
k3
(

8π

3
log(k) +D +O(k−1/2+ǫ)

)

+O(K−1/2+ǫ)

=
8

ωK4

∑

k∈2N

w

(

k

K

)

k3 log(k) +
3D

ωπK4

∑

k∈2N

w

(

k

K

)

k3 +O(K−1/2+ǫ).

We deduce the main term of Theorem 1.2 by summing over k. We apply the Euler-MacLaurin
formula for this.

Lemma 4.8 ([IK], Lemma 4.1). Let a, b ∈ Z and f a C1 function on [a, b]. Then

∑

n∈2N
a≤n≤b

f(n) =
1

2

∫ b

a

f(x)dx+ O

(

∫ b

a

|f ′(x)|dx + |f(a)|+ |f(b)|
)

.

Let ω′ =
∫ 2

1 w(x)x3dx. We get

Ndiag
av (f) =

4

ωK4

∫ 2K

K

w
( x

K

)

x3 log(x)dx +
3D

2ωπK4

∫ 2K

K

w
( x

K

)

x3dx+O(K−1/2+ǫ)

+O

(

1

K4

∫ 2K

K

(

1

K
w′
( x

K

)

x3 log(x) + w
( x

K

)

x2 log(x) + w
( x

K

)

x2

)

dx

)

=
4

ωK3

∫ 2

1

w(x)(xK)3 log(xK)dx +
3D

2ωπK3

∫ 2

1

w(x)(xK)3dx+O(K−1/2+ǫ) +O(K−1+ǫ)

= 4 log(K) + 4
ω′

ω
+

3D

2π
+O(K−1/2+ǫ)

= 4 log(K) +D′ +O(K1/2+ǫ).

Here D′ is a constant that only depend on w, ǫ > 0 is arbitrary and the implied constant depends
only on ǫ and w.

5. Rank 1 term

We focus now on the first non-diagonal term of the Kitaoka formula, called the rank 1 term. It
comes from the combination of Equations (1.3), (2.4) and the Kitaoka formula (Theorem 2.1). Its
shape is

12
√
2π3

ωK4

∑

k∈2N

w

(

k

K

)

∑

T,Q∈P(Z)/PSL2(Z)

1

ǫ(T )ǫ(Q) det(TQ)3/4

·
∫

Λev

V (det(T ), det(Q), tφ, k)φ(zT )φ̄(zQ)dφ

·
∑

±

∑

c,s≥1

∑

U,V

(−1)k/2
c3/2s1/2

H±(UQU t, V −1TV −t; c)Jℓ

(

4π
√

det(TQ)

cs

)

.
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We have various sums that we need to restrict, up to a negligible error. First, we apply Lemma
3.3. The sum over k is

∑

k∈2N

w

(

k

K

)

(−1)k/2V (det(T ) det(Q), tφ, k)Jℓ

(

4π
√

det(TQ)

cs

)

.

We get three terms. The w0 term is negligible because all the other sums and integral have a
cut-off that gives a polynomial growth in K. The terms with w+ and w− have the property that

w±(x) ≪A K2
(

1 + K2

x

)−A

with x =
4π
√

det(TQ)

cs . They also depend on det(T ), det(Q) and tφ and

follow the other bounds of Equation (2.5). In our case, we have

w±(x, x1, x2, τ,K)≪A K2
(

1 +
x1x2

K4

)−A (

1 +K1/2| log(x2/x1)|
)−A

(

1 +
|τ |2
K

)−A(

1 +
K2

x

)−A

.

with x as above, x1 = det(T ), x2 = det(Q), τ = tφ. We also have a control on the derivatives given
by Equation (2.5) and Lemma 3.3.

5.1. First upper bound. We prove a first easy bound for the rank 1 term. Let ǫ > 0. We may
change the value of ǫ when we refer to older computations. Combining the estimate of Lemma
3.3 with Equation (2.5), we get c2s2K4−ǫ ≪ det(TQ) ≪ K4+ǫ up to a negligible error. Hence
c, s = O(Kǫ) and K4−ǫ ≪ det(TQ) ≪ K4+ǫ. Since det(T ) − det(Q) ≪ K−1/2+ǫ det(T ), we get
K2−ǫ ≪ det(T ), det(Q) ≪ K2+ǫ. Now, we look at the exponential sum H± defined after Theorem
2.1. It vanishes unless there are U = ( ∗ ∗

u3 u4
) /{±1} and V = ( v1 ∗

v3 ∗ ) in GL2(Z) such that

(UQU t)22 = (V −1TV −t)22 = s.

Let T =
(

a b
b c

)

, Q = ( x y
y z ). Using the inequality r2 + t2 ≥ 2rt, this gives

s = av23 − 2bv1v3 + cv21 ≥ 2(
√
ac− |b|)|v3v4|,

s = xu2
3 + 2yu3u4 + zu2

4 ≥ 2(
√
xz − |y|)|u3u4|.

Since T and Q are reduced, we have 2(
√
ac− |b|) ≥ √ac ≥

√

det(T ) and similarly for Q. If u3u4

or v1v3 is non-zero, then we get s ≥
√

det(T ) or
√

det(Q) and both are of size ≫ K1−ǫ. Since
s = O(Kǫ) up to a negligible error, this is negligible. Otherwise we have u4 = v1 = 0 because

c≫
√

det(T )≫ K1−ǫ and similarly z ≫ K1−ǫ. Since U, V ∈ GL2(Z), we have the following choices
of representatives for U and V :

U =

(

0 1
1 0

)

, V = ±
(

0 1
1 0

)

.(5.1)

We get s = a = x and in particular x, a = O(Kǫ). Since T and Q are reduced, we also have
|y|, |b| = O(Kǫ) and K2−ǫ ≪ z ≍ c≪ K2+ǫ. Therefore there are O(K2+ǫ ·K3/2+ǫ) choices for T and
Q and O(Kǫ) choices for c, s and U, V . Combining with other estimates (recall that the exponential
sum is bounded by c2) and Equation (3.4) with T = K1/2+ǫ and K1−ǫ ≪ Im(zT ), Im(zQ)≪ K1+ǫ,
we get that the rank 1 term is bounded by

K−4
∑

T,Q∈P(Z)/PSL2(Z)

1

ǫ(T )ǫ(Q) det(TQ)3/4

∑

c,s≥1

∑

±

∑

U,V

(−1)k/2
c3/2s1/2

H±(UQU t, V −1TV −t; c)

· e
(

±2
√

det(TQ)

cs

)

∫

Λev

w±

(

4π
√

det(TQ)

cs
, det(T ), det(Q), tφ,K

)

φ(zT )φ̄(zQ)dφ

≪ K−4 ·K3.5+ǫ ·K−3+ǫ ·Kǫ ·K2 ·K3/2+ǫ

≪ K4ǫ.
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5.2. Analysis of the T,Q-sum. We need to win extra cancellation somewhere. We do that in the
T,Q-sum. We consider ∆ = det(Q) − det(T ). We know that ∆ = O(K3/2+ǫ) up to a negligible
error. We can fix all the coefficients of Q except z at the cost of Kǫ choices. The possible values
of ∆ = xz − y2 − det(T ) follow then an arithmetic progression as z varies. More precisely, d :=
y2 + det(T ) ≡ ∆ mod x. Looking at the last table in Appendix A, we have ǫ(Q) = 1 unless x = z,
which is a negligible case for K big enough. Similarly, we can suppose that ǫ(T ) = 1. The T,Q-sum
looks like

∑

K2−ǫ≪det(T )≪K2+ǫ

∑

|∆|≪O(K3/2+ǫ)
∆≡d mod x

1

(det(T )(det(T ) + ∆))3/4
(5.2)

·
∫

Λev

w±

(

4π
√

det(T )(det(T ) + ∆)

cs
, det(T ), det(T ) + ∆, tφ,K

)

φ(zT )φ̄(zQ)dφ

·H±(UQU t, V −1TV −t; c)e

(

±2
√

det(T )(det(T ) + ∆)

cs

)

.

Recall the definition of H± just after Theorem 2.1, the representatives of U and V chosen in
equation (5.1) and that s = a = x. We get that

P = UQU t =

(

z y
y s

)

, S = V −1TV −t =

(

c b
b s

)

.

Therefore, z = p1 and the summand in H± is

e

(

d̄1s4d
2
2 ∓ d̄1p2d2 + s2d2 + d̄1p1 + d1s1

c
∓ p2s2

2cs4

)

= e

(

d̄1z

c

)

e

(

d̄1s4d
2
2 ∓ d̄1p2d2 + s2d2 + d1s1

c
∓ p2s2

2cs4

)

= e

(

d̄1∆

cs

)

e

(

d̄1(det(T ) + y2)

cs

)

e

(

d̄1s4d
2
2 ∓ d̄1p2d2 + s2d2 + d1s1

c
∓ p2s2

2cs4

)

.(5.3)

We fix ∆ mod cs, so that we can see this term as constant in the ∆-sum. This adds a sum over
d mod cs such that d ≡ y2 + det(T ) mod s. Now, we consider the spectral integral.

Lemma 5.1. We have

∫

Λev

w±

(

4π
√

det(T )(det(T ) + ∆)

cs
, det(T ), det(T ) + ∆, tφ,K

)

φ(zT )φ̄(zQ)dφ

= w̃±

(

4π
√

det(T )(det(T ) + ∆)

cs
, det(T ), det(T ) + ∆,K

)

+O(K2.5+ǫ),

where the function

w±(x, x1, x2, k) :=
(x1x2)

1/4

s

∫ ∞

−∞
w± (x, x1, x2, τ, k)

·
(

(

x1

x2

)iτ

+

(

x2

x1

)iτ

+ ν(1/2− iτ)(x1x2)
iτ + ν(1/2 + iτ)(x1x2)

−iτ

)

dτ

4π
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(for s fixed) satisfies the following bounds:

xj1
( x1

k1/2

)j2 ( x1

k1/2

)j3 dj1

dxj1

dj2

dxj2
1

dj3

dxj3
2

w̃±(x, x1, x2, k)

≪A,j1,j2,j3 k2.5(x1x2)
1/4

(

1 +
k2

x

)−A
(

1 +
x1x2

k2

)−A
(

1 +
(x1 − x2)k

1/2

x1

)−A

.

Proof. We have Im(zT ), Im(zQ) ≫ K1−ǫ and the spectral parameter tφ satisfies |tφ| ≪ K1/2+ǫ up
to a negligible error. In that case, the cusps forms in the spectral decomposition are known to be
negligible and the only terms that remain are the constant terms in the Fourier expansion of the
Eisenstein series and the constant function. Details about the decay of the K-Bessel function and
the Eisenstein series can be found in Lemma 3.1 of [Y2]. For the Fourier coefficients of cusp forms,
a polynomial bound like Equation 8.8 in [I] suffices. More precisely, let

y1 =

√

det(T )

s
, y2 =

√

det(Q)

s

and

ν(s) = π1/2Γ(s− 1/2)

Γ(s)

ζ(2s− 1)

ζ(2s)
=

π−(1−s)Γ(1− s)ζ(2(1 − s))

π−sΓ(s)ζ(2s)
.

Then |ν(s)| = 1 and the constant term of the Eisenstein series E(x+ iy, s) is ys + ν(1− s)y1−s. We
have

∫

Λev

w±

(

4π
√

det(T )(det(T ) + ∆)

cs
, det(T ), det(T ) + ∆, tφ,K

)

φ(zT )φ̄(zQ)dφ

=

∫ ∞

−∞
w±

(

4π
√

det(T )(det(T ) + ∆)

cs
, det(T ), det(T ) + ∆, tφ,K

)

·
(

y
1/2+iτ
1 + ν(1/2 + iτ)y

1/2−iτ
1

)(

y
1/2−iτ
2 + ν(1/2− iτ)y

1/2+iτ
2

) dτ

4π

+

∫ ∞

−∞
V (τ)

3

π
dτ +O(e−cK)

= w̃±

(

4π
√

det(T )(det(T ) + ∆)

cs
, det(T ), det(T ) + ∆,K

)

+O(K2.5+ǫ).

Note that the bounds and control on the derivatives in the other variables of w± also apply to
w̃±. We use |τ | ≪ K1/2+ǫ, s ≥ 1 and |ν(1/2± iτ)| = 1 to get the stated bound. �

Remark. In the definition of w̃±, it is possible to integrate by parts the τ -integral multiple times for
the factors with the terms (y1/y2)

±itτ . It gives a cut-off of the form (k1/2 log(y2/y1))
−j and we can

get a strong decay for the other terms. We saw that a = x = s. Hence this is redundant information
with the cut-off on det(Q)/ det(T ) of Equation 2.5 in our case.

We also have

1

(det(T ) + ∆)3/4
=

1

det(T )3/4
+O(K−2+ǫ),
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up to a negligible error. Inserting this, Equation (5.3) and the result of Lemma 5.1 in Equation
(5.2), we get

∑

det(T )≍K2

det(T )−3/2
∑

d mod cs
d≡y2+det(T ) mod s

H±(P, S, c)
∑

|∆|≪O(K3/2)
∆≡d mod cs

e

(

±2
√

det(T )(det(T ) + ∆)

cs

)

· w̃±

(

4π
√

det(T )(det(T ) + ∆)

cs
, det(T ), det(T ) + ∆, k

)

+O(K3+ǫ).

5.3. Poisson summation and stationary phase. We apply Poisson summation formula to the
∆-sum.

∑

∆=O(K3/2)
∆=d mod cs

w̃±

(

4π
√

det(T )(det(T ) + ∆)

cs
, det(T ), det(T ) + ∆,K

)

e

(

±2
√

det(T )(det(T ) + ∆)

cs

)

=
1

cs

∑

h∈Z

∫ ∞

−∞
w̃±

(

4π
√

det(T )(det(T ) + t)

cs
, det(T ), det(T ) + t,K

)

· e
(

±2
√

det(T )(det(T ) + t) + h(d− t)

cs

)

dt.

To analyze this integral, we need to compute the derivative of w̃± with respect to t. We have

d

dt
w̃±

(

4π
√

det(T )(det(T ) + t)

cs
, det(T ), det(T ) + t,K

)

=

(

d

dx
w̃±

)

(

4π
√

det(T )(det(T ) + t)

cs
, det(T ), det(T ) + t,K

)

4π

cs

√

det(T )

det(T ) + t

+

(

d

dx2
w̃±

)

(

4π
√

det(T )(det(T ) + t)

cs
, det(T ), det(T ) + t,K

)

≪A

(

K−2+ǫ +K−3/2+ǫ
)

(det(T )(det(T ) + t))1/4K2.5

(

1 +
csK2

√

det(T )(det(T ) + t)

)−A

·
(

1 +
det(T )(det(T ) + t)

K2

)−A(

1 +
tK1/2

det(T )

)−A

More generally, each derivative with respect to t adds a factor of size K−3/2+ǫ (up to a constant
depending on j). This is because it either adds a derivative in the first or the third variable of w̃±,
or it differentiates a factor of the form (det(T )+t)−r. All these added factors are of size≪ K−3/2+ǫ.
If |h| ≫ Kǫ, we integrate by parts, until we can sum over h and get a big enough power saving.
Each derivative in t adds in the worst case nothing here. But the h-sum can be a small as we want,
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so we get a strong decay. More precisely,

∑

|h|≫Kǫ

e

(

hd

cs

)∫ ∞

−∞
w̃±

(

4π
√

det(T )(det(T ) + t)

cs
, det(T ), det(T ) + t, k

)

· e
(

±2
√

det(T )(det(T ) + t)− ht

cs

)

dt

=
∑

|h|≫Kǫ

e

(

hd

cs

)(

cs

−2πih

)j ∫ ∞

−∞

dj

dtj

[

w̃±

(

4π
√

det(T )(det(T ) + t)

cs
, det(T ), det(T ) + t, k

)

· e
(

±2
√

det(T )(det(T ) + t)

cs

)]

e

(

−ht

cs

)

dt

≪A,j,ǫ K
1+ǫ

∑

|h|≫Kǫ

1

hj

∫ ∞

−∞
K3.5

(

1 +
tK1/2

x1

)−A

dt

(

1 +
csK2

det(T )

)−A(

1 +
det(T )2

K2

)−A

≪A K−A

(

1 +
csK2

det(T )

)−A(

1 +
det(T )2

K2

)−A

.

Using the cut-off on the other sums, we see that this term is negligible. For small h, we apply
the stationary phase method. The stationary point is

± 1

cs

√

det(T )

det(T ) + t0
=

h

cs
=⇒ t0 =

det(T )

h2
− det(T ).

Note that h must have the same sign as the left-hand side. There are three cases. If h = 0, then
there is no stationary point. We apply in that case Lemma 3.5. If h = ±1, then t0 = 0. We apply
Lemma 3.6. Otherwise, t0 ≫ det(T )K−ǫ and w̃± is negligible for such t. We apply again Lemma
3.5. Following notations there, we have w = w̃± and

h(t) = 2π

(

±2
√

det(T )(det(T ) + t) + h(d− t)

cs

)

.

In the first and the last case, we get

α = −K3/2+ǫ, β = K3/2+ǫ,

X = K3.5+ǫ, U = K1.5,

R = K−ǫ,

Y = K2+ǫ, Q = K2−ǫ.

Lemma 3.5 tells us that the integral is bounded by

≪A K3/2+ǫ ·K3.5+ǫ[(K2−2ǫ/K1+ǫ)−A +K−1.5A].

Using the cut-off on the other sums, we see that these terms are negligible. If t0 = 0, we apply
Lemma 3.6. Following the notations, we get

α = −K3/2+ǫ, β = K3/2+ǫ,

X = K3.5+ǫ, U = K1.5−ǫ,

Y = K2+ǫ, K2−ǫ ≪ Q≪ K2+ǫ.

Here we mean that there exists a Q in this interval that works. Then the integral is bounded by

≪ QX√
Y
≪ K5.5−1+ǫ = K4.5+ǫ.
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We sum after that over T with K2−ǫ ≪ det(T ) ≪ K2+ǫ, which gives a contribution of size
K2+ǫ ·K−3+ǫ ≪ K−1+2ǫ. The remaining sums are the sum over the other coefficients of Q, the one
over d mod xc and the various ±, c, s, U, V -sums for the exponential sum H±. They are all of size
Kǫ. The rank one term is therefore bounded by

≪ K−4 ·K−1+ǫ ·Kǫ ·K4.5+ǫ ≪ K−1/2+3ǫ.

6. Rank 2 term

In this chapter, we focus on the last error term. It comes from the combination of Equation (1.3),
(2.4) and the rank 2 term of the Kitaoka formula (Theorem 2.1). Its shape is

96π4

ωK4

∑

k∈2N

w

(

k

K

)

∑

T,Q∈P(Z)/PSL2(Z)

1

ǫ(T )ǫ(Q) det(TQ)3/4

·
∫

Λev

V (det(T ), det(Q), tφ, k)φ(zT )φ̄(zQ)dφ

·
∑

det(C) 6=0

K(Q, T ;C)

| det(C)|3/2Jℓ(TC
−1QC−t).

Using the estimate Jk(x)≪
(

x
k

)k
in Equation (3.1), we get

Jℓ(TC
−1QC−t) =

∫ π/2

0

Jℓ(4πs1 sin(θ))Jℓ(4πs2 sin(θ)) sin(θ)dθ ≪
(s1s2

k2

)k

.

Therefore k2−ǫ ≪ s1s2 = det(TC−1QC−t)1/2 = det(TQ)1/2

det(C) ≪ k2+ǫ

det(C) . The last estimate comes

from Equation (2.5), up to a negligible error. Hence det(C)≪ kǫ and k4−ǫ ≪ det(T ) det(Q)≪ k4+ǫ.
Using Equation (2.5), we also have det(T ) = det(Q)(1 +O(k−1/2+ǫ)).

The restriction on C is a bit subtle because there exist infinitely many matrices with a fixed
determinant. We prove later that actually ‖C‖∞ ≪ kǫ. Lemma 2 in [B] gives us already a bound

‖C‖2 ≪ ‖T ‖‖Q‖.(6.1)

This is because s1 ≫ k1−ǫ, again using Equation (3.1). Since, without loss of generality, T and Q
are reduced, we have ‖C‖2 ≪ det(T ) det(Q)≪ k4+ǫ. Recall also that the generalized Kloosterman
sum K(Q, T,C) is normalized by the factor det(C)3/2. The goal of the section is to prove that the
C-sum is short and to detect further cancellation in the T and Q sums coming from the generalized
Bessel function Jℓ. The idea is that if s1 and s2 are far from each other, Jℓ should be small. This
is made more precise in Subsection 6.2.

6.1. Summing over k. First we use Lemma 3.3 to take advantage of the average over k. Let
s1 ≥ s2 > 0 the square root of the two eigenvalues of TC−1QC−t. We want to analyze the sum

∑

k∈2N

w̃(k)Jℓ(TC−1QC−t) =
∑

k∈2N

w̃(k)

∫ π/2

0

Jℓ(4πs1 sin(α))Jℓ(4πs2 sin(α)) sin(α)dα,

where

w̃(k) = w̃(k, det(T ), det(Q), tφ) = w

(

k

K

)

V (det(T ), det(Q), tφ, k)

and we temporarily drop the other dependencies. Applying Equation (3.2) gives

∑

k∈2N

w̃(k)Jℓ(TC−1QC−t) = Re

(

1

π
e

(

−k − 1/2

4

)

·
∫ π/2

0

∫ ∞

0

e

(

(s21 + s22)t+
sin(α)2

t

)

∑

k∈2N

w̃(k)Jℓ(4πs1s2t)
dt

t
sin(α)dα

)

.
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We apply Lemma 3.3 to the sum over k. Using w0(x)≪A min{k−A, x−1/2}, we see that the term
with w0 is negligible. For the two other terms, we get

Re

(

e(1/8)

π

∫ π/2

0

∫ ∞

0

e

(

(s21 + s22)t+
sin(α)2

t
± 2s1s2t

)

w±(4πs1s2t)
dt

t
sin(α)dα

)

.

We forget about the real part and just bound what is inside. We show first a trivial bound for
this integral. We use the bounds on w± of Lemma 3.3 and the last Equation of (3.1). As stated in
the remark after Lemma 20 of [BC], this is also valid for w±. We get

I :=

∫ π/2

0

∫ ∞

0

e

(

(s21 + s22)t+
sin(α)2

t
± 2s1s2t

)

w±(4πs1s2t)
dt

t
sin(α)dα

≪
∫ ∞

0

|w±(4πs1s2t)|
dt

t

≪K2

(

∫ Kǫ

0

(

1 +
K2

s1s2t

)−1
dt

t
+

∫ ∞

Kǫ

dt

t3/2

)

≪K2+ǫ.(6.2)

6.2. Analysis of the integral and distance between eigenvalues.

Lemma 6.1. Let w± as above, a > 0, 0 < b≪ 1 and K2−ǫ ≪ c≪ K2+ǫ. If a≫ K3ǫ, then

∫ ∞

0

e

(

at+
b

t

)

w±(ct)
dt

t
≪A K−A.

Proof. Lemma 3.3 says that dj

dtj w±(ct)≪A,j t−jK2(1 +K−ǫ/t)−A for all A > 0. By induction, we
have that

dj

dtj
w±(ct)

t
≪A,j t

−(j+1)K2

(

1 +
1

Kǫt

)−A

.

This is because each derivative add either a derivative on w±(ct) or a
1
t factor. We integrate by

parts multiple time. More precisely, we apply Lemma 3.5. Following the notations there, we have

h(t) = 2π

(

at+
b

t

)

, h′(t) = 2π

(

a− b

t2

)

,

h(j)(t) = (−1)jj! 2πb
tj+1

for j ≥ 2,

w(t) =
w±(ct)

t
, w(j)(t)≪A,j t

−(j+1)K2

(

1 +
1

Kǫt

)−A

.

The only stationary point is t0 such that 0 = h′(t0) = a − b
t20
, that is t0 =

√

b
a (it only exists if

a 6= 0). Let suppose that a ≫ K3ǫ. Then in particular t0 ≪ K−3ǫ/2 since b ≪ 1. But in that part
of the t-integral, the function w± is negligible. For t ≤ 2t0, we use the bound on w±:

∫ 2t0

0

e

(

at+
b

t

)

w±(ct)
dt

t
≪A K2

∫ 2t0

0

(

1 +
1

Kǫt

)−A
dt

t
≪A K2(Kǫt0)

A ≪A K2−ǫA/2.
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For t ≥ 2t0, we apply Lemma 3.5. We split everything into dyadic intervals [α, 2α] with α ≥ 2t0.
We use the constants

X =
K2

α
, U = α,

Y = 1≫ b

α
, Q = α,

R = πa ≤ 2π

(

a− b

α2

)

.

Lemma 3.5 gives us
∫ 2α

α

e

(

at+
b

t

)

w±(ct)
dt

t
≪A K2(πaα)−A ≪A K2 ·K−3ǫAα−A.

This can be summed for a dyadic decomposition of [2t0,∞[ to get
∫ ∞

2t0

e

(

at+
b

t

)

w±(ct)
dt

t
≪A K2 ·K−3ǫA

∞
∑

j=⌊log2(2t0)⌋
2−jA ≪A K2 ·K−(3ǫ/2−3ǫ)A.

Combining both estimates, we have
∫ ∞

0

e

(

at+
b

t

)

w±(ct)
dt

t
≪A K2−ǫA/2.

�

Remark. In our case, we have a = (s1 ± s2)
2, b = sin(α)2 and c = 4πs1s2. Using the various

estimates coming from Equations (2.5) and (6.1), we see that, up to a negligible error, a ≪ K3ǫ.
Note that (s1 + s2)

2 ≥ 4s1s2 ≫ K2−ǫ. So the term with this sign is always negligible.

6.3. Size of the T , Q and C sums. We are left to analyze the case a = (s1 − s2)
2 ≪ Kǫ. We

changed the value of ǫ here. In this section and the next ones, we may change again the value of ǫ
from one display to the other. We only do this if the new ǫ is only a constant multiple of the old
one.

The goal of this section is to see which T , Q and C satisfy the bound (s1 − s2)≪ Kǫ. Note first
that if λ1 ≥ λ2 are the two eigenvalues of M = TC−1QC−t, then

λ1 − λ2 = s21 − s22 = (s1 − s2)(s1 + s2)≪ K1+2ǫ.

This comes from the fact that K2−ǫ ≪ s1s2 ≪ K2+ǫ, so that K1−ǫ ≪ s1+ s2 ≍ s1 ≍ s2 ≪ K1+ǫ.
We fix some notations for this section:

T =

(

a b
b c

)

, Q =

(

x y
y z

)

, C−1 = (cij),

Q̃ = C−1QC−t =

(

x̃ ỹ
ỹ z̃

)

, M = T Q̃ = TC−1QC−t, M = (mij).

Note that all numbers are integers or half-integers except for cij ∈ 1
det(C)Z and for x̃, ỹ, z̃ ∈

1
2 det(C)2Z. But since | det(C)| ≪ Kǫ, this only creates a negligible difference in terms of estimates

for distances between coordinates. So we treat them as if they were integers in the rest of the
argument and point out where the difference occurs. Recall also that T and Q are reduced, so
2|b| ≤ a ≤ c and 2|y| ≤ x ≤ z. In particular, K2−ǫ ≪ ac ≍ det(T ) ≪ K2+ǫ and similarly for Q.
Consider (λ1−λ1)

2 the square of the difference between the two eigenvalues of M . By the quadratic
formula, this corresponds to the discriminant of the characteristic polynomial of M . We have

K2+ǫ ≫ (λ1 − λ2)
2 = tr(M)2 − 4 det(M) = (m11 −m22)

2 + 4m12m21.

Inserting the values of the product T Q̃, we get

∆ = (ax̃− cz̃)2 + 4(aỹ + bz̃)(bx̃ + cỹ).
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We rearrange the second term. Completing the squares with respect to ỹ, we have

4(aỹ + bz̃)(bx̃+ cỹ) = 4acỹ2 + 4bỹ(ax̃+ cz̃) + 4b2x̃z̃

=

(

2
√
acỹ + b

ax̃+ cz̃√
ac

)2

− b2
(ax̃+ cz̃)2

ac
+ 4b2x̃z̃

=
1

ac
(2acỹ + b(ax̃+ cz̃))2 − b2

ac
(ax̃ − cz̃)2.

We can do a similar computation by completing the square on b. We get

∆ = (ax̃− cz̃)2
(

1− b2

ac

)

+
1

ac
(2acỹ + b(ax̃+ cz̃))2,(6.3)

∆ = (ax̃− cz̃)2
(

1− ỹ2

x̃z̃

)

+
1

x̃z̃
(2x̃z̃b+ ỹ(ax̃+ cz̃))2.(6.4)

Since T is reduced, b2

ac ≤ 1
4 . We also have x̃z̃ > ỹ2 because det(Q̃) > 0. So all the squares in

Equations (6.3) and (6.4) must be bounded by K2+ǫ. For the first square, we get

ax̃− cz̃ ≪ K1+ǫ.(6.5)

In particular K2−ǫ ≪ ax̃ ∼ cz̃ ≪ K2+ǫ, i.e. ax̃ and cz̃ are of the same size. This is because
the product of the terms is of size det(T Q̃) ≫ K4−ǫ (by Equation (2.5) and considerations at the
beginning of this section). Using that a ≤ c and K2−ǫ ≪ ac≪ K2+ǫ, this equation also gives

z̃ =
a

c
x̃+O

(

K1+ǫ

c

)

≤ x̃+O(K2ǫ).

We introduce the notation: z̃ . x̃ ⇔ z̃ ≤ x̃ + O(Kǫ) as K → ∞. Equation (6.5) allows us to
rearrange the right square:

K2+ǫ ≫ 2acỹ + b(ax̃+ cz̃) ∼ 2c(aỹ + bz̃) ∼ 2a(cỹ + bx̃).

This gives the two other relations

aỹ + bz̃ ≪ K2+ǫ

c
,(6.6)

cỹ + bx̃≪ K2+ǫ

a
.(6.7)

In particular, we have ỹ = −z̃ b
a +O(Kǫ). Using the relation 2|b| ≤ a, we get 2|ỹ| . z̃ . x̃. So Q̃

is almost in a ”reversed” reduced form and in particular K2−ǫ ≪ x̃z̃ ≍ det(Q̃) ≍ xz
det(C2) ≪ K2+ǫ.

Lemma 6.2. Let ǫ > 0 and K ∈ 2N. Let T,Q ∈ P(Z) such that K4−ǫ ≪ det(TQ) ≪ K4+ǫ and
det(T )− det(Q)≪ K3/2+ǫ, and C ∈M2(Z) such that 0 6= det(C)≪ Kǫ and ‖C‖ ≪ K2+ǫ. If

‖C‖ ≫ K2ǫ

then the integral I in Equation (6.2) satisfies

I ≪A K−A,

i.e. ‖C‖ ≪ K2ǫ up to a negligible error.

Proof. Following the hypothesis, we see that C−1 has coefficients in 1
det(C)Z and | det(C−1)| ≪ 1.

Therefore det(C)‖C−1‖ = ‖C‖ for the∞-norm on M2(R). So it is equivalent to prove that ‖C−1‖ ≪
Kǫ. We can use the results of this subsection and the last.
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The proof relies on the numbers of non-zero entries in C−1. Because det(C) 6= 0, there are at
most two zeros and in that last case, C−1 is diagonal or anti-diagonal. Since det(C−1) ≪ 1, the

result is obvious in this case. Computing the product Q̃ = C−1QC−t, we have

x̃ = xc211 + 2yc11c12 + zc212

z̃ = xc221 + 2yc21c22 + zc222.

The matrix Q is reduced, therefore we have 2|y|c11c12 ≤ |y|(c211 + c212) ≤ 1
2xc

2
11 +

1
2zc

2
12 and the

same for the second equation. We get

x̃ ≍ xc211 + zc212,

z̃ ≍ xc221 + zc222.

If c12c22 6= 0, then we have x̃, z̃ ≫ z ≥ x. Therefore xz ≤ z2 ≪ x̃z̃ ≍ xz
det(C)2 ≪ xz. We deduce

that x ≍ z and we must have x̃ ≍ ‖C−1‖2x or z̃ ≍ ‖C−1‖2x. Then xz
det(C)2 ≍ x̃z̃ ≫ ‖C−1‖2xz and

so ‖C−1‖2 ≪ det(C)−2 ≪ 1.
If c12 = 0, then we have x̃ & z̃ ≫ z ≥ x. So xz

det(C)2 ≍ x̃z̃ ≫ z(z+O(Kǫ)) and z ≥ x≫ z+O(Kǫ).

Therefore z ≍ x and we can finish as above.
The last case is c22 = 0. We have xz

det(C)2 ≍ x̃z̃ ≫ c212c
2
21xz so c12, c21 ≪ 1 and z̃ ≍ xc221 ≍ x. For

ỹ, we have

ỹ = c11c21x+ (c11c22 + c12c21)y + c12c22z = c21(c11x+ c12y).

Let suppose that c11 ≫ K2ǫ, so that

z̃ +O(Kǫ)≫ |ỹ| ≍ c21c11x≫ K2ǫc21x ≍ K2ǫz̃.

This is a contradiction. Therefore ‖C‖ ≪ K2ǫ. �

The next lemma is a way to decouple the relationship between the variables.

Lemma 6.3. Let ǫ > 0 and K ∈ 2N. Let T,Q ∈ P(Z) such that K4−ǫ ≪ det(TQ) ≪ K4+ǫ and
det(T )− det(Q)≪ K3/2+ǫ, and C ∈M2(Z) such that det(C) 6= 0 and ‖C‖ ≪ Kǫ. If

ac− det(C)2x̃z̃ ≫ K3/2+ǫ

or

a− det(C)z̃ ≫ K−1/2+ǫz̃

then the integral I in Equation (6.2) satisfies

I ≪A K−A,

that is, up to a negligible error,

ac = det(C)2x̃z̃ +O(K3/2+ǫ),(6.8)

a = det(C)z̃ +O(K−1/2+ǫz̃).(6.9)

Proof. We know that

det(T ) = det(Q) +O(K3/2+ǫ)

⇔ ac− b2 = det(C)2(x̃z̃ − ỹ2) +O(K3/2+ǫ).(6.10)

We want to simplify this using the other equations in this section. We multiply the Equations
(6.6) and (6.7) together.

(ac)2ỹ2 = (cz̃b+O(K2+ǫ))(ax̃b+O(K2+ǫ))

= acx̃z̃b2 +O(bK2+ǫ(ax̃+ cz̃) +K4+2ǫ),

⇒ ỹ2 =
x̃z̃

ac
b̃2 +O(bK4ǫ +K2ǫ).
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We simplified the big O term using Equation (6.5) that tells us that K2−ǫ ≪ ax̃ ≍ cz̃ ≪ K2+ǫ

and ac≫ K2−ǫ. Inserting this result in Equation (6.10), we get

ac− b2 = det(C)2(x̃z̃ − ỹ2) +O(K3/2+ǫ)

= det(C)2
(

x̃z̃ − x̃z̃

ac
b2 +O(bKǫ +Kǫ)

)

+O(K3/2+ǫ)

= det(C)2
x̃z̃

ac
(ac− b2) +O(K3/2+ǫ).

We have 0 6= ac− b2 ≍ ac. Multiplying by ac
ac−b2 , we get

ac = det(C)2x̃z̃ +O(K3/2+ǫ).

By subtraction of Equation (6.10), we also get b2 = det(C)2y2+O(K3/2+ǫ). Combining Equations
(6.5) and (6.8) and recalling that ac, cz̃ ≫ K2−ǫ (Equations (2.5) and (6.5)), we have

det(C)2 z̃(ax̃− cz̃)≪ K1+ǫ det(C)2z̃,

+ a(ac− det(C)2x̃z̃)≪ K3/2+ǫa,

ca2 − det(C)2cz̃2 ≪ K1+ǫ det(C)2z̃ +K3/2+ǫa,

a2 − det(C)2z̃2 ≪ K1+3ǫ z̃

c
+K3/2+ǫ a

c
≪ K−1+4ǫz̃2 +K−1/2+2ǫa2,

a− det(C)z̃ ≪ K−1/2+2ǫa ≍ K−1/2+3ǫz̃.

The last equation comes from the observation that, on the line above, the two bounds on the
right are smaller than a term on the left. Therefore the two terms must be of the same size. We can
then factorize the left-hand side and simplify. �

Remark. Similarly, we can prove that c− det(C)x̃≪ K−1/2+ǫx̃ up to a negligible error.

6.4. Estimate of the rank 2 term. First, we analyze the sum coming from the Fourier series
and the spectral integral. Each term in the T,Q-sum has the following shape. We suppose for the
following argument that C is fixed.

1

ǫ(T )ǫ(Q) det(TQ)3/4

∫ π/2

0

∫ ∞

0

e

(

(s1 − s2)
2t+

sin(α)2

t

)∫

Λev

w−(πs1s2t)φ(zT )φ̄(zQ)dφ
dt

t
sin(α)dα

≪ det(TQ)−3/4 ·Kǫ ·K2 ·K1/2+ǫdet(TQ)1/4√
ax

≪ K1/2+3ǫ 1√
ax

We used the following estimates. Recall that det(T ), det(Q)≫ K2−ǫ and ǫ(T ), ǫ(Q)≪ 1 up to a
negligible error. The integrals over t and α are of size Kǫ, as seen in Equation (6.2) (with K2 being
the size of w±). The spectral integral is bounded using Lemma 3.4.

Now, we count the number of T and Q using the cut-off we computed. First, we fix Q. This
also fix Q̃ since C is fixed. We fix a, c and b in this order. Equations (6.9), (6.5) and (6.6) give
respectively

a = det(C)z̃ +O

(

z̃

K1/2−ǫ

)

,

c =
ax̃

z̃
+O

(

K1+ǫ

z̃

)

,

b =
aỹ

z̃
+O

(

K2+ǫ

cz̃

)

.
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Note that in the big O of the first equation, the fraction can be smaller than 1. We also know
that cz̃ ≫ K2−ǫ. Therefore to fix T , we have

O

((

z̃

K1/2−ǫ
+ 1

)

· K
1+ǫ

z̃
· K

2+ǫ

cz̃

)

= O

((

K−1/2+ǫ +
1

z̃

)

K1+3ǫ

)

possible choices. We use the divisor bound, Equation (6.9), z̃ ≪ K1+ǫ and a, x≫ 1 to get that the
T,Q-sum is of size

∑

K2−ǫ≪x̃z̃≪K2+ǫ

∑

2|ỹ|≪z̃+O(Kǫ)

(

K−1/2+ǫ +
1

z̃

)

K1+ǫ ·K1/2+ǫ

≪
∑

K2−ǫ≪x̃z̃≪K2+ǫ

(

z̃

K1/2−ǫ
+ 1

)

K3/2+3ǫ

≪ K2+ǫ ·K1/2+2ǫ ·K1+4ǫ

≪ K3.5+7ǫ.

We have estimated the T,Q-sum, as always up to a negligible error. Now we combine this with
other estimates to bound the term of rank 2. Note that there are O(Kǫ) choices for C by Lemma
6.2. We get

96π3

ωK4

∑

T,Q∈P(Z)/PSL2(Z)

1

ǫ(T )ǫ(Q) det(TQ)3/4

∑

‖C‖≪1
det(C) 6=0

| det(C)|3/2
∫ π/2

0

∫ ∞

0

e

(

(s1 − s2)
2t+

sin(α)2

t

)

·
∫

Λev

w−(πs1s2t)φ(zT )φ̄(zQ)dφ
dt

t
sin(α)dα

≪ K−4 ·Kǫ ·K3.5+ǫ

≪ K−1/2+2ǫ.

This proves the bound on the rank two term. Together with the results of Sections 4 and 5, it
concludes the proof of Theorem 1.2.

Appendix A. Automorphism of binary quadratic forms

The goal of this appendix is to compute all the automorphisms in GL2(Z) of a binary quadratic
form. We set

Q =

(

x y
y z

)

M =

(

a b
c d

)

.

Here Q is a (weakly) reduced integral quadratic form, that is x, z 6= 0, 2|y| ≤ x ≤ z, 2y, x, z ∈ Z

and det(Q) > 0, and M ∈ GL2(Z). We are looking for the couples (Q,M) such that

Q = M tQM.

Note first that if we replace M by −M , we get the same result. Therefore we only consider
matrices up to multiplication by ±1. The computation gives

0 = M tQM −Q =

(

a2x+ 2acy + c2z − x abx+ (ad+ bc)y + cdz − y
abx+ (ad+ bc)y + cdz − y b2x+ 2bdy + d2z − z

)

.(A.1)

We consider the first entry. Using the identity u2 + v2 ≥ 2|uv|, we have

0 = a2x+ 2acy + c2z − x ≥ 2|ac|(
√
xz − |y|)− x ≥ |ac|x− x.

Therefore we have |ac| ≤ 1. We have to work a bit more for the last entry. Suppose that |d| ≥ 2.
Then d2 − 1 ≥ 3

4d
2 and so

0 = b2x+ 2bdy + (d2 − 1)z ≥ 2|b|
√

d2 − 1
√
xz − 2|bdy| ≥ 2|bd|(

√

3/4
√
xz − |y|).
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Since
√

3/4 > 1/2, we have b = 0. Therefore we have two cases: |d| ≤ 1 or b = 0.

A.1. Diagonal and antidiagonal M . We begin with the two easy cases of diagonal and antidiag-
onal matrix M . There are 4 possibilities up to multiplication by −1:

M =

(

1 0
0 1

)

,

(

1 0
0 −1

)

,

(

0 1
−1 0

)

,

(

0 1
1 0

)

.

The identity is an automorphism for any matrixQ. Looking at Equation (A.1), we get respectively
for the other three matrices

0 =

(

0 −2y
−2y 0

)

,

(

z − x −2y
−2y x− z

)

,

(

x− z 0
0 z − x

)

.

Therefore the conditions on Q are respectively y = 0, x = z ∧ y = 0 and x = z.

A.2. Diagonal Q. We quickly consider the case y = 0, so we can rule out this later. Equation (A.1)
rewrites as

0 =

(

a2x+ c2z − x abx+ cdz
abx+ cdz b2x+ d2z − z

)

.

First, if a = 0, then b, c = ±1 since the determinant is bc = ±1. The first entry gives x = z
and the second entry gives d = 0. If c = 0, then a, d = ±1 and the diagonal entries vanish. The
second entry gives b = 0. In both cases, we are back to a diagonal or antidiagonal M . Otherwise, if
ac = ±1, then the first entry gives z = 0 which is a contradiction. So all these cases fit in the last
section. From now, we suppose that y 6= 0

A.3. The case ac = 0. If c = 0, then automatically a and d equal ±1 since the determinant is ad.
That gives the matrices

M =

(

1 n
0 1

)

,

(

1 n
0 −1

)

for n a non-zero integer. The other cases can be obtained by multiplying by −1. Looking at
Equation (A.1), we have

0 =

(

0 anx+ (ad− 1)y
anx+ (ad− 1)y n2x+ 2dny

)

.

So if ad = 1 like in the first case, then x = 0 and there is no such Q. In the second case, ad = −1
and we get nx = 2y or nx+ 2y = 0. Since x ≥ 2|y|, we get n = sgn(y) and x = 2|y|. Now, if a = 0
then bc = ±1 and we have the matrices

M =

(

0 1
1 n

)

,

(

0 1
−1 n

)

.

Equation (A.1) rewrite as

0 =

(

z − x (bc− 1)y + cnz
(bc− 1)y + cnz x+ 2bny + (n2 − 1)z

)

.

If bc = 1, then z = 0 and there is no such matrix. Otherwise, x = z and we get the two equations
nx = 2y and nx+ 2y = 0. Again, x ≥ 2|y| so n = − sgn(y) and x = 2|y|.
A.4. The case ac = 1. We have a = c = ±1, without loss of generality say a = c = 1. Therefore
the first entry of the matrix is 2y + z = 0. Since 2|y| ≤ x ≤ z, we get −2y = x = z. Equation (A.1)
rewrites as

0 =

(

0 −by − dy − y
−by − dy − y −2b2y + 2bdy − 2(d2 − 1)y

)

.

If b = 0, then the second entry gives d + 1 = 0 so d = −1 and this is compatible with the last
entry. If b 6= 0, then we have two cases. If d = 0, then the second equation gives b = −1. This is
compatible with the last entry. If d = ±1, then the last entry is −2b2y + 2bdy = 0, so that b = d.
There is no such matrix with determinant ±1 and it is also incompatible with the second entry.
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A.5. The case ac = −1. We have a = −c = ±1, without loss of generality say a = −c = 1. So the
first entry of Equation (A.1) gives 2y = z. Since 2|y| ≤ x ≤ z, we have 2y = x = z. The full matrix
rewrites

0 =

(

0 by − dy − y
by − dy − y 2b2y + 2bdy + 2d2y − 2y

)

.

If b = 0, then the second entry gives d = −1 and is compatible with the last. If b 6= 0, then d = 0
gives b = 1 for both equations. If d = ±1, then the last entry is 2b2y + 2bdy = 0 so b = −d. This is
incompatible with the second entry that says b = d+ 1 (for integral b and d).

A.6. Summary. We summarize the result in the table below. The first column indicates the sign
of the determinant of M . For each matrix M , there is the matrix −M that has the same action on
Q. Note that except for the fourth entry, y is always supposed to be non-zero.

det(M) M Q

+

(

1 0
0 1

)

Any

−
(

1 0
0 −1

) (

x 0
0 z

)

+

(

0 1
−1 0

) (

x 0
0 x

)

−
(

0 1
1 0

) (

x y
y x

)

−
(

1 1
0 −1

) (

2y y
y z

)

−
(

1 −1
0 −1

) (

2y −y
−y z

)

+

(

0 1
−1 1

) (

2y y
y 2y

)

+

(

0 1
−1 −1

) (

2y −y
−y 2y

)

−
(

1 0
1 −1

) (

2y −y
−y 2y

)

+

(

1 −1
1 0

) (

2y −y
−y 2y

)

−
(

1 0
−1 −1

) (

2y y
y 2y

)

+

(

1 1
−1 0

) (

2y y
y 2y

)

We rewrite this table in terms of Q. The second column lists all the automorphisms of Q (modulo
±id). The three following columns indicates respectively the number of automorphisms in SL2(Z), in
GL2(Z) and the ratio between the two. The number of automorphisms ǫ(Q) in PSL2(Z) is just half

of the number in SL2(Z). The last column gives the corresponding Heegner point z =
−y+i
√

xz−y2

x .
Here y 6= 0 everywhere and y > 0 except in the third row. Recall that if Q is reduced and x = z or
x = 2|y|, we can, furthermore, suppose that y > 0. This removes the fifth and the seventh rows.
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Q M SL2(Z) GL2(Z) Ratio Heegner pt
(

x 0
0 z

) (

1 0
0 1

)

,

(

1 0
0 −1

)

2 4 2 i
√

z
x

(

x 0
0 x

) (

1 0
0 1

)

,

(

1 0
0 −1

)

,

(

0 1
−1 0

)

,

(

0 1
1 0

)

4 8 2 i
(

x y
y x

) (

1 0
0 1

)

,

(

0 1
1 0

)

2 4 2
−y+i
√

x2−y2

x
(

2y y
y z

) (

1 0
0 1

)

,

(

1 1
0 1

)

2 4 2 −1
2 + i

√
2z−y
2
√
y

(

2y −y
−y z

) (

1 0
0 1

)

,

(

1 −1
0 −1

)

2 4 2 1
2 + i

√
2z−y
2
√
y

(

2y y
y 2y

) (

1 0
0 1

)

,

(

0 1
1 0

)

,

(

1 1
0 −1

)

,

(

0 1
−1 1

)

,

(

1 0
−1 −1

)

,

(

1 1
−1 0

)

6 12 2 −1+i
√
3

2
(

2y −y
−y 2y

) (

1 0
0 1

)

,

(

0 1
1 0

)

,

(

1 −1
0 −1

)

,

(

0 1
−1 −1

)

,

(

1 0
1 −1

)

,

(

1 −1
1 0

)

6 12 2 1+i
√
3

2

Other

(

1 0
0 1

)

2 2 1
−y+i
√

xz−y2

x
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