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Abstract

The sphere packing problem asks to find a packing of congruent spheres in Rn that has
the biggest density among all possible sphere packings. We go through the 3 papers that led
to the solution of this problem in dimensions 8 and 24. In 2003, Cohn and Elkies provided a
new tool to prove upper bounds for the density of any sphere packing [1]. Building on their
work, Viazovska proved in 2016 that the E8 lattice packing is the densest sphere packing in
8 dimensions [2]. Shortly after and using the same methods, she and Cohn, Kumar, Miller
and Radchenko proved that the Leech lattice packing is the densest sphere packing in 24
dimensions [3].
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1 Introduction

1.1 History and motivations

The problem of sphere packing, that is stacking unit spheres in the Euclidean space without overlap
and try to get as little left space as possible, is an old mathematical question. In 1611, Johannes
Kepler conjectured that the natural face-centered cubic packing and its variations provide the
maximal density among all sphere packing in 3 dimensions. Carl Friedrich Gauss proved in 1831
that it was true among the lattice sphere packings, i.e. the packing where the centers of spheres
form a lattice. Finally, in 1998, Thomas Hales provided a proof of the general case in a famous
paper [4] of 250 pages coming with 3 gigabytes of computer programs and data. Due to the size
of the proof, the referee’s panel of 12 people that was in charge to evaluate the proof concluded
only that they were ”99%” sure that the proof was right. In the end, Hales and his collaborators
provided a formal proof [5] in 2015 that can be totally checked by computers. Previously, the
two-dimensional case, i.e. the packing of disks in the plane, was solved for lattice packings by
Joseph-Louis Lagrange in 1773. The optimal one is given by the usual hexagonal lattice packing.
The first complete proof in dimension 2 was done by László Fejes Tóth in 1940 [6].

For higher dimensions, not much was known until 2016. We know the optimal density of a
lattice packing for dimensions less or equal to 8 and for dimension 24. But there is evidence that
the densest sphere packing could be irregular. In particular, we know a non-lattice packing in
R10 and in bigger dimensions that are denser than the best lattice packing known. However, for
dimensions 8 and 24, a few evidence indicates that it could be simpler. There are good candidates
for each dimension that have been known since a long time. They are the packing given by the E8

lattice that we denote Λ8, and the Leech lattice Λ24. These lattices arise from different theories,
especially from the theory of error-correcting code which is closely related to the sphere packing
problem. The E8 lattice is given by

Λ8 :=

{
(xi) ∈ Z8 ∪

(
Z8 + 1

2

)8∣∣∣ 8∑
i=1

xi = 0 (mod 2)

}
.

The Leech lattice is harder to describe explicitly. In the book Sphere packings, lattices and groups
by Conway and Sloane [7] chapter 4, § 11 one can find various constructions and properties of the
Leech lattice. We give matrices of generators in appendix A from which we can deduce all the
required properties of the lattices.

These lattices arise from natural construction. For example, the 3-dimensional best sphere
packing can be created in the following way: we embed copies of the usual 2-dimensional hexagonal
packing in R3 and replace the circles by spheres. Then we put these copies over each other with
the center of a new sphere exactly over the hollow between the spheres already in place. This
construction can be continued in higher dimensions but it gives less and less good packings as the
dimension grows. However, in dimension 8, the holes between spheres are getting just big enough
to exactly put another one between them. This gives the E8 lattice. A similar construction leads
to the Leech lattice in 24 dimensions. Also, they are both unique in their respective dimension in
some sense, and this uniqueness leads to the uniqueness of the optimal packing.

In 2003, Henry Cohn and Noam Elkies published an article [1], where they provided a new
method to get an upper bound on the maximal density. This method is based on Poisson sum-
mation formula and trying to control some function and its Fourier transform at the same time, a
very difficult task. For instance, the Heisenberg’s uncertainty principle in physics is based on the
inability to control together a function and its Fourier transform. Using linear programming to
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find a good candidate function, they improved the best bounds already known, that were found
in a similar way. Especially, they got bound for dimensions 8 and 24 that were only 1.000001 and
1.0007071 times bigger than the density of the Λ8 and Λ24 packings. Looking at these surprisingly
close results, they began to suspect that some ”magic” functions f8 and f24 exist and give exactly
the right density in dimensions 8 and 24. They began to seek for other properties of the magic
functions. Collaborating with Kumar and later with Miller, they found lots of numerical evidence
that a function satisfying the conditions was existing somewhere and that one just needs to find
the right way to explicit it. As Cohn said [8]:

”These calculations left no doubt that the magic functions existed: one could compute
them to fifty decimal places, plot them, approximate their roots and power series
coefficients, etc. They were perfectly concrete and accessible functions, amenable to
exploration and experimentation, which indeed uncovered various intriguing patterns.
All that was missing was an existence proof. However, proving existence was no easy
matter. There was no sign of an explicit formula, or any other characterization that
could lead to a proof. Instead, the magic functions seemed to come out of nowhere.”

Considering the difficulty of the proof by Hales in dimension 3 and all the problems that could
arise in larger dimensions, it was a real surprise that Maryna S. Viazovska created by announcing
a short proof of the optimality of the E8 lattice packing in an article [2] of only 24 pages. The
very evening of her publication, Henry Cohn sent to her a mail proposing to apply her method
to dimension 24 and just one week later, they were posting with 3 other collaborators an article
proving the 24-dimension case [3]. The construction of the magic function by Viazovska relies on
modular forms, special functions that have been known since a long time for their relations with
lattices and for having deep and surprising relations with a lot of fields in mathematics. Moreover,
Viazovska and its collaborators proved in 2019 that these two lattices are universally optimal [9],
meaning that they minimize energy for a lot of potential functions. For example, putting electrons
at each point of the lattices would give the lowest energy level among all configurations in these
dimensions.

1.2 Overview of the plan

We start by introducing more rigorous definitions. Let X ⊆ Rn a discrete set such that for any
two points x, y ∈ X, the Euclidean distance between them satisfies |x − y| ≥ 2. We put unit
balls Bn(0, 1) centered at each point of X. The condition above implies that the spheres have all
disjoint interior. We call the set

P =
⋃
x∈X

Bn(x, 1)

a sphere packing of Rn. If there is n linearly independent translations that left invariant the
packing, P is said to be periodic. If X is a lattice, we say that P is a lattice sphere packing. The
density of the packing P is defined as

∆P := lim sup
r→∞

Vol(P ∩Bn(0, r))

Vol(Bn(0, r))
,

where Vol is the Lebesgue measure on Rn. Recall that

Vol(Bn(0, r)) =
πn/2rn

Γ(n
2
+ 1)

,
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where Γ is the usual gamma function. Note also that the density does not change by rescaling or
applying an isometry on the packing. So for any lattice, one can easily define the corresponding
densest lattice packing by placing balls of radius half of the length of the shortest vector. For
example, the E8 lattice has a shortest vector of length

√
2 and the density of the E8 lattice packing

is π4

384
≈ 0.25367. Similarly, the Leech lattice has a minimal vector length of 2 and the density of

the corresponding lattice packing is π12

12!
≈ 0.00193.

The sphere packing problem asks to find the maximal density ∆P among all possible sphere
packings P . For example, Hale proved that the maximal density in dimension 3 was π√

18
≈ 0.74048

and Lagrange that the maximal density in dimension 2 is π√
12

≈ 0.90690. The goal of this paper is
to provide a mostly self-contained proof of the optimality of the E8 lattice packing in dimension 8
and of the Leech lattice packing in dimension 24. We don’t need too much information on these
packings since we provide sharp bounds for the density. Hence, we only give computations of the
density of these packings, and also use some other properties to prove uniqueness. We will begin
by the proof the theorem of Cohn and Elkies (3.1 from [1]) which gives an upper bound on the
density of any sphere packing.

Theorem 1.1 (Cohn, Elkies). Let f : Rn → R a non-zero ”admissible” function satisfying

1. For |x| ≥ 1, f(x) ≤ 0;

2. For any y, f̂(y) ≥ 0.

Then the density of any sphere packing in dimension n is smaller than

f(0)

2nf̂(0)
Vol(Bn(0, 1)).

Here, f̂ means the Fourier transform of f and ”admissible” is a convergence condition that we
define later. The proof of the theorem consists of using the Poisson summation formula for lattices
to make the density of a lattice packing appears and do estimations to bound the density from
above. We will also discuss the uniqueness of the packings and give some useful properties of the
functions that we seek. After that, we will review some basis about modular forms. In the end,
we will prove the two main theorems of this paper:

Theorem 1.2 (Viazovska). The density of a sphere packing in 8 dimensions is at most π4

384
and

the unique periodic packing achieving it is the E8 lattice packing.

Theorem 1.3 (Cohn, Kumar, Miller, Radchenko, Viazovska). The density of a sphere packing
in 24 dimensions is at most π12

12!
and the unique periodic packing achieving it is the Leech lattice

packing.

We will proceed by constructing the respective magic functions for theorem 1.1 using modular
forms. To this end, notice first that we can reduce ourselves to radial functions since the hypothesis
and the conclusion of the theorem do not change under rotation. Hence, one can replace f by its
average over rotations. Moreover, one can split f into eigenfunctions of the Fourier transform in
the following way:

f+ :=
f + f̂

2
, f− :=

f − f̂

2
.

So f+ and f− are eigenfunctions of the Fourier transform of eigenvalues +1 respectively −1 and
f = f+ + f− and f̂ = f+ − f−. This allows us to split the construction of the magic functions
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into two distinct problems. Another important constraint on our construction is that the proof
of theorem 1.1 tells us that the functions f and f̂ must have roots at any non-zero point of the
lattice if we want a sharp bound. So in particular, f+ and f− also share these roots. Hence, these
two final chapters follow both the same process. First, we create two radial eigenfunctions of the
Fourier transform with zeros at almost all points of the respective lattice. These functions consist
of the product of the Laplace transform of a modular form and a squared sine factor that gives
the right roots. Then we take a linear combination of these two forms to get the desired functions
for theorem 1.1 and we prove that they satisfy the right properties to conclude.

1.3 Acknowledgements

I would like to thank Pr. Dr. Özlem Imamoglu for introducing me to the beautiful theory of
modular forms, for supervising my thesis and for all the good advice on its writing.

I also thank all my ETH comrades and friends and in particular J. Glas for the fruitful discus-
sions and remarks.

2 The linear programming bound

The bound of theorem 1.1 is usually called the linear programming bound, even if it does not rely
on linear programming at all. This is because one can use linear programming tools to look for
functions that gives the best bounds, or at least approximations of the best bounds. The proof of
this theorem relies on a version of the Poisson summation formula for lattices. This chapter begins
by some review of Fourier analysis and lattices in Rn and the proof of the Poisson summation
formula. Then we prove the main theorem 1.1 of Cohn and Elkies and we conclude by discussing
some properties required by the magic functions to give a sharp bound and uniqueness.

2.1 Fourier analysis and lattices in Rn

We work with the following normalization of Fourier transform and we reduce ourselves to nice-
behaved functions for convergence purposes.

Definition 2.1. Let f : Rn → R an L1(Rn) function. The Fourier transform of f is

F(f)(y) = f̂(y) :=

∫
Rn

f(x)e−2iπ⟨x,y⟩dx

for any y ∈ Rn.

Definition 2.2. A continuous function f : Rn → R is admissible if there exist constants δ > 0
and C such that both |f(x)| and |f̂(x)| are bounded by C(1 + |x|)−n−δ. f is a Schwartz function
if f ∈ C∞(Rn) and all derivatives of f are O

(
(1 + |x|)−k

)
for all k positive integer.

Remark. Note that a Schwartz function is always admissible because Fourier transform maps
Schwartz functions to Schwartz functions. Moreover, if f is radial, then it is a Schwartz function
if and only if the function f(r) := f(|x|) is Schwartz, where x ∈ Rn is of norm r. Most of the
functions we will consider are radial Schwartz functions. Also, Fourier inversion theorem is valid
for admissible functions since their Fourier transform is L1.
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Definition 2.3. Let Λ ⊆ Rn a lattice. We denote by |Λ| the determinant of a matrix of generators
of Λ which is also the volume of a fundamental parallelogram of Λ. The dual lattice Λ∗ of Λ is

Λ∗ := {t ∈ Rn|∀x ∈ Λ ⟨t, x⟩ ∈ Z}.

Note that a basis of Λ∗ is given by the dual basis of any basis of Λ. Hence, |Λ∗| = |Λ|−1. If
|Λ| = |Λ∗| = 1, the lattice is called unimodular. A lattice is integral if the inner product of two
vectors of the lattice is always an integer. It is even if the squared norm of a vector is always even.
The Gram matrix of a basis of Λ is the matrix of the basis times its transpose. It gives the inner
product between elements of the basis. In particular, Λ is integral, respectively even if and only if
the Gram matrix has integer respectively even entries.

Lemma 2.4. Let Λ an integral unimodular lattice. Then Λ∗ = Λ.

Proof. Since Λ is integral, we have Λ ⊆ Λ∗. And since Λ is also unimodular, we must have equality,
because then they both have the same fundamental parallelogram.

Remark. From the matrix of generators of Λ8 and Λ24 given in appendix A, one can easily compute
its Gram matrix, which consists of all the inner product between vectors of the basis and is equal
to the product of the matrix and its transpose. These two matrices implies that the two lattices
are integral, even and unimodular. Hence, we also have that Λ∗

8 = Λ8 and Λ∗
24 = Λ24.

Definition 2.5. Let f : Rn → R a Λ-periodic function, i.e. for all x ∈ Rn and v ∈ Λ, f(x+ v) =
f(x). The Fourier coefficients of f corresponding to Λ are given by

ft :=

∫
Rn/Λ

f(x)e−2iπ⟨t,x⟩dx

for t ∈ Λ∗, where the integral is given by the projection of the Lebesgue measure on Rn to Rn/Λ.

Theorem 2.6. Let f : Rn → R a Λ-periodic and L1(Rn/Λ) function such that the sum of the
Fourier coefficients ft, t ∈ Λ∗ converges absolutely. Then

f(x) =
1

|Λ|
∑
t∈Λ∗

fte
2iπ⟨t,x⟩

almost everywhere (with respect to Lebesgue measure). Moreover, the function on the right-hand
side of the equality is continuous.

Proof. By hypothesis, 1
|Λ|
∑

t∈Λ∗ fte
2iπ⟨t,x⟩ is a uniformly convergent series of continuous functions,

hence it is also continuous. We consider the function g(x) := f(x) − 1
|Λ|
∑

t∈Λ∗ fte
−2iπ⟨t,x⟩ and

compute its Fourier coefficients. Let u ∈ Λ∗ and gu the corresponding Fourier of g.

gu =

∫
Rn/Λ

(
f(x)− 1

|Λ|
∑
t∈Λ∗

fte
2iπ⟨t,x⟩

)
e−2iπ⟨u,x⟩dx = fu −

1

|Λ|
∑
t∈Λ∗

ft

∫
Rn/Λ

e2iπ⟨t−u,x⟩dx.

Since the sum of the Fourier coefficients converges absolutely, it is valid to exchange the sum and
the integral. The value of the integral is∫

Rn/Λ

e2iπ⟨t−u,x⟩dx =

∫
[0,1]n

|Λ|e2iπ⟨t−u,y⟩dy = |Λ|
n∏

j=1

∫ 1

0

e2iπ(tj−uj)yjdyj =

{
|Λ| if t = u,
0 else.
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So gu = 0, hence all the Fourier coefficients of g are zeros. On the other hand, the trigonometric
polynomials are dense in C(Rn/Λ) by the Stone-Weierstrass theorem (see for example [10], theorem
2.40), therefore also in L1(Rn/Λ). So a function in L1(Rn/Λ) with all Fourier coefficients equal to
zero is null almost everywhere. Hence, the theorem holds.

Theorem 2.7 (Poisson summation formula). Let Λ ⊆ Rn a lattice, y ∈ Rn a vector and f : Rn → R
an admissible function. Then ∑

x∈Λ

f(x+ y) =
1

|Λ|
∑
t∈Λ∗

f̂(t)e−2iπ⟨y,t⟩.

Proof. We base our proof on the book Introduction to Fourier Analysis on Euclidean Spaces by
Stein and Weiss [11]. The two sums converge absolutely by hypothesis. Moreover, the first sum
is a periodic function with respect to Λ. We prove that its Fourier series is the second sum. Let
t ∈ Λ∗, gt the corresponding Fourier coefficient of the first sum and P a fundamental parallelogram
of Λ:

gt =

∫
P

(∑
x∈Λ

f(x+ y)

)
e−2iπ⟨y,t⟩dy =

∑
x∈Λ

∫
P

f(x+ y)e−2iπ⟨y,t⟩dy

=
∑
x∈Λ

∫
P−x

f(y)e−2iπ⟨y−x,t⟩dy =

∫
Rn

f(y)e−2iπ⟨y,t⟩dy = f̂(t).

Interchanging integral and sum is valid by absolute convergence and the third equality comes from
the definition of fundamental domain. Theorem 2.6 implies then that∑

x∈Λ

f(x+ y) =
1

|Λ|
∑
t∈Λ∗

f̂(t)e−2iπ⟨y,t⟩

almost everywhere. But since both functions are continuous, they are equal everywhere.

2.2 Proof of the theorem of Cohn and Elkies

Proof of 1.1. We start by reducing the theorem to the case of periodic packing, i.e. packing where
the center of the spheres are given by finitely many translations of a lattice Λ. The density of such
packings can come arbitrary close to the density of any packing. To see this, let P an arbitrary set
of points forming a packing. We approximate this packing by taking a finite portion of it and tiling
the whole space with it. More precisely, consider the set of all spheres of P included in [−a, a]n
for a > 0. This gives finitely many spheres of centers v1, . . . , vNa . Consider the packing

P̃a =
Na⋃
i=1

(Λa + vi),

where Λa = 2aZn. One can see that the density of P̃a converges to the density of P as a goes to
infinity. This is because one can also compute the density using intersection with a growing box
instead of a ball, and because the number of balls intersecting the boundary of the box is negligible
with respect to the number of spheres inside the box as r goes to infinity. For more details about
the equivalent definitions of density, see appendix A in [1].
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Now, we consider a periodic packing given by a lattice Λ and N vectors v1, . . . , vN . In this
case, one easily see that we can reduce the computation of the density to any fundamental domain
of the lattice. Therefore, the density of the packing is

∆ =
N Vol(Bn(0, r/2))

|Λ|
,

where r is the minimal distance between two centers of the packing, because for any translate of
the fundamental domain, there is exactly N balls in the packing.

Without loss of generality, we rescale the packing such that the minimal distance between two
centers is 1. Let f an admissible function satisfying the conditions of the theorem. The Poisson
summation formula tells us that

N∑
j,k=1

∑
x∈Λ

f(x+ vj − vk) =
1

|Λ|

N∑
j,k=1

∑
t∈Λ∗

e−2iπ⟨vj−vk,t⟩f̂(t) =
1

|Λ|
∑
t∈Λ∗

f̂(t)

∣∣∣∣∣
N∑
j=1

e−2iπ⟨vj ,t⟩

∣∣∣∣∣
2

.

Note that since the minimal distance between two spheres is 1, |x+ vj − vk| < 1 if and only if
x = 0 and j = k. Hence, using that f(x) ≤ 0 for |x| > 1, we can bound the left side from above

by Nf(0). Also, using that f̂(x) ≥ 0 for all x, we can bound the right side from below by N2f̂(0)
|Λ| .

Therefore, we have

Nf(0) ≥
N∑

j,k=1

∑
x∈Λ

f(x+ vj − vk) =
1

|Λ|
∑
t∈Λ∗

f̂(t)

∣∣∣∣∣
N∑
j=1

e−2iπ⟨vj ,t⟩

∣∣∣∣∣
2

≥ N2f̂(0)

|Λ|
.

Hence, we conclude that
f(0)

f̂(0)
≥ N

|Λ|
.

Multiplying by Vol(Bn(0, 1/2)) on each side, we conclude the proof of the theorem.

We also prove a modified version of this theorem that is more useful for applications:

Theorem 2.8 (Cohn, Elkies). Let r > 0 and f : Rn → R a non-zero admissible function satisfying

1. f(0) = f̂(0) = 1;

2. For |x| ≥ r, f(x) ≤ 0;

3. For any y, f̂(y) ≥ 0.

Then the density of any sphere packing in dimension n is smaller than(r
2

)n
Vol(Bn(0, 1)). (2.1)

Proof. Notice that g : x 7→ f(x
r
) satisfies the conditions of the theorem. Using usual properties of

Fourier transform, we know that

ĝ(0) =

∫
Rn

f(x
r
)dx =

1

r

∫
Rn

f(x)dx =
1

r
f̂(0).

We conclude by applying theorem 1.1 to g.
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Remark. Looking at the proof of theorem 1.1, we can immediately gather information about the
magic functions we are looking for. For the inequalities to be sharp, one needs to make no error by
deleting the terms at all the non-zero points of the lattice and its dual. Hence, f and f̂ must have
zeros at all non-zero points of the lattice, respectively the dual lattice. Moreover, since f and f̂
do not change sign outside of the unit ball, all these zeros must be double zeros (or even of bigger
degree), except the ones of f at |x| = r, where they must be of degree 1 (or of odd degree). In this
case, the Poisson summation formula says that f(0) = f̂(0) as in theorem 2.8.

Remark. In our case, we know that the E8 and Leech lattices are their own dual. Moreover, Λ8

has vector length
√
2k for k = 1, 2, 3, . . . and Λ24 for k = 2, 3, . . . . This is easily seen for Λ8 since

the second vector of the matrix has norm
√
2. For Λ24, one can prove this using modular forms

(see [7], chapter 12). As we said in the introduction, we can suppose that the magic functions are
radial. We write f(r) for the value of f at any x of norm r.

In view of this information, Cohn and Miller made numerical experiments by combining func-
tions of the form p(r)e−πr, where p is a polynomial, to approximate the magic functions. From
these, they gathered other information on it, especially that their second Taylor coefficient was
probably rational. More precisely:

f8(r) = 1− 27

10
r2 +O(r4) f̂8(r) = 1− 3

2
r2 +O(r4)

f24(r) = 1− 14347

5460
r2 +O(r4) f̂24(r) = 1− 205

156
r2 +O(r4)

2.3 Uniqueness

We now give the proof that the best sphere packings are unique in dimensions 8 and 24 given
the existence of the magic functions. Of course, these optimal packings can not be unique since
removing one sphere from them would not change the density. But if we reduce ourselves to
periodic packing, then it is the case. This relies on the uniqueness of the E8 and Leech lattices up
to certain conditions and on some properties of the magic functions that we are looking for.

Proposition 2.9. Assume there exist functions f8 and f24 satisfying the hypothesis of theorem
2.8 in dimension 8 and 24 and such that the bound given by equation (2.1) on the density equal
the density of the E8 packing, respectively the Leech packing. If in addition these functions vanish
only at the vector lengths of the respective lattice, then there is a unique optimal periodic sphere
packing corresponding to this lattice.

To prove proposition 2.9, we begin with a small lemma on subgroups of Rn.

Lemma 2.10. Let S a subset of Rn such that S contains 0 and n linearly independent vectors.
Assume that the squared distance between any two points of S is always an even integer. Then the
additive subgroup of Rn generated by S is an even integral lattice.

Proof. Let G ⊆ Rn be the subgroup generated by S. Then for any x, y ∈ S, we have

2⟨x, y⟩ = |x− 0|2 + |y − 0|2 − |x− y|2,

and the numbers on the right-hand side are even and squares, so the inner product of two vectors
in S is an integer. This extends easily to G by linearity. This implies that the squared distance

9



between two vectors of G is also an integer, hence G is an integral lattice (because it contains a
basis of Rn). Finally, the squared norm of a vector is an even integer by hypothesis, so this lattice
is even.

Proof of proposition 2.9. Now, let us consider a periodic packing P of Rn, for n = 8 or 24 which
has the same density as Λ8 or Λ24. This packing is given by finitely many translates of a lattice Λ
by vectors v1, . . . , vN . Note that rescaling and translating Λ do not change the density of the sphere
packing. Thus, without loss of generality, we can suppose that v1 = 0 and |Λ| = N . Applying the
Poisson summation formula for f = f8 or f24 as in the proof of the linear programming bound 1.1,
we conclude that

Nf(0) ≥
N∑

j,k=1

∑
x∈Λ

f(x+ vj − vk) =
1

|Λ|
∑
t∈Λ∗

f̂(t)

∣∣∣∣∣
N∑
j=1

e−2iπ⟨vj ,t⟩

∣∣∣∣∣
2

≥ N2f̂(0)

|Λ|
.

By the condition f(0) = f̂(0) from theorem 2.8 and |Λ| = N , the two bounds are equal. So
there must be equality everywhere. In particular, each non-zero point of the packing x + vj − vk
must occur at a zero of f , hence it sits inside the E8 or the Leech lattice by the additional conditions
on f . So if we look at the set of points of our periodic packing, it satisfies the hypothesis of lemma
2.10 and generates a subgroup of Rn which is an even integral lattice Λ′ included inside Λ8 or Λ24.

Since the lattice is integral, its Gram matrix is an integral matrix and has an integral determi-
nant. Hence, |Λ′| ≥ 1 since it is the square root of this integer. Thus, Λ′ has at most one point
per unit of volume in Rn. But since |Λ| = N , our periodic packing P , which is given by

P =
N⋃
i=1

(Λ + vi),

has already one sphere per unit of volume. So in fact, Λ′ cannot be bigger than P since both are
periodic. Hence, the sphere packing is a lattice packing given by Λ′.

Finally, to have the density of the E8, respectively Leech packing, the minimal vector length of
Λ′ (which gives the size of the packing) must be the square root of 2, respectively 4. Indeed, the
density of the packing Λ′ is

Vol(Bn(0, r/2)) =
πn/2rn

2nΓ(n/2 + 1)
,

where r is the minimal vector length, and the density of the respective lattices are π4

384
and π12

12!

as seen before. As it is stated below in theorem 2.11, Λ8 and Λ24 are the unique unimodular
even lattices in dimensions 8 and 24 with such minimal vector lengths. Since Λ′ satisfies the same
conditions, we conclude that it is equal to Λ8 or Λ24. So the E8 lattice packing and the Leech
lattice packing are unique in their respective dimension.

Theorem 2.11. The E8 lattice is the unique lattice Λ in R8 (up to isometries) such that:

1. Λ is unimodular;

2. Λ is even.

The Leech lattice is the unique lattice Λ in R24 (up to isometries) such that:

1. Λ is unimodular;

10



2. Λ is even;

3. The minimal non-zero vector of Λ has norm 2.

Proof. See [7], chapters 16 and 18.

3 Modular forms

Modular forms are analytic functions of the upper half complex plan which transform in a certain
way under the action of the modular group SL(2,Z) and which do not grow too fast at i∞. It turns
out that these functions have a lot of good behaviors and applications, in particular in number
theory. Moreover, it is possible to generalize the definition of modular form in various ways. For
example, by using other discrete subgroups of SL(2,R) or by relaxing the growth condition.

3.1 Introduction to modular forms

We begin by an overview of the relation between the upper half plan and the group SL(2,R), and
of the definition of modular forms. For a complete introduction to these concepts, see [12] or [13].

Let H := {z ∈ C| Im(z) > 0} be the upper half plan of the complex plan. We consider on it
the action of SL(2,R) by linear fractional transformations, given by(

a b
c d

)
z =

az + b

cz + d
,

for all

(
a b
c d

)
∈ SL(2,R) and z ∈ H. This action is well defined on H, since

Im

((
a b
c d

)
z

)
= Im

(
(az + b)(cz̄ + d)

|cz + d|2

)
=

(ad− bc) Im(z)

|cz + d|2
=

Im(z)

|cz + d|2
. (3.1)

We consider the restriction of this action to the subgroup SL(2,Z) of matrices with integer
coefficients, called the full modular group. This group is generated by the two matrices:

T :=

(
1 1
0 1

)
, S :=

(
0 −1
1 0

)
.

For a positive integer N , the principal congruence subgroup of level N is defined as

Γ(N) :=

{(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣ a = d = 1 (mod N), b = c = 0 (mod N)

}
.

A subgroup Γ ⊆ Γ(1) = SL(2,Z) is a congruence subgroup if there is some positive integer N
such that Γ(N) ⊆ Γ. The factor of automorphy is defined by

j(z, γ) := cz + d,

for all z ∈ H and γ =

(
a b
c d

)
∈ Γ(1). It satisfies the following chain rule:

j(z, γ1γ2) = j(z, γ2)j(γ2z, γ1).

11



Let f : H → C, γ ∈ Γ(1) and k ∈ Z. We denote by f [γ]k the function defined by

f [γ]k(z) := j(z, γ)−kf(γz).

The chain rule implies that f [γ1γ2]k = (f [γ1]k)[γ2]k. Hence, this operator is an action of Γ(1) on
the complex-valued functions on H, called the weight-k operator. Moreover, for a positive integer

N , the matrix TN :=

(
1 N
0 1

)
belongs to Γ(N) and acts as

f [TN ]k(z) = f(z +N).

Hence, if f is invariant under Γ(N), it must be N -periodic. If it is also holomorphic, it admits
a Fourier series of the form

f(z) =
∑
n∈ 1

N
Z

fn(y)q
n,

where z = x + iy and q = e2iπz. This is standard notations which we will not recall each time.
One can show that fn is independent of y. We can now define a modular form.

Definition 3.1. Let k an integer and Γ a congruence subgroup containing Γ(N) for some N . A
(holomorphic) modular form of weight k and group Γ is a holomorphic function f : H → C such
that:

1. f [γ]k = f for all γ ∈ Γ;

2. For all γ ∈ SL(2,Z), the Fourier expansion of f [γ]k is of the form

f [γ]k(z) =
∞∑
n=0

fγ, n
N
e2iπ

n
N
z.

If in addition fγ,0 = 0 for all γ ∈ SL(2,Z), f is called a cusp form. The space of modular forms
of weight k and congruence subgroup Γ is denoted Mk(Γ) and the subspace of cusp forms Sk(Γ).
Since the multiplication of two modular forms gives another modular form of weight the sum of
the two weights, we can define the graded ring M(Γ) := ⊕k>0Mk(Γ) of modular forms associated
to Γ. The subring S(Γ) := ⊕k>0Sk(Γ) of cusp forms is an ideal of M(Γ).

Remark. 1. For a modular form of weight k on the full modular group Γ(1), one can reduce
himself to test the first condition only on S and T since these two matrices generate Γ(1).
Hence, it is enough to compute that

f(z) = f(Tz) = f(z + 1), f(z) = z−kf(Sz) = z−kf(−1/z).

2. For the second condition, we know that f [γ]k admits a Fourier series from the first one. Hence,
we just have to check that the limit of f [γ]k(z) when Im(z) → ∞ exists. In particular, f is
a cusp form if and only if f((z) → 0 when Im(z) → ∞.

3. The second condition is called holomorphy at the cusps. We explain this terminology. We
consider the completion of H given by H̄ := {z ∈ C| Im(z) ≥ 0} ∪ {∞}. The cusps are
the points Q ∪ {∞}. We extend the action of SL(2,R) to this completion by continuity. It
gives the same action on R when the denominator does not vanish and behaves in a natural
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way at infinity. Intuitively, the holomorphy at infinity is given by f is holomorphic when
Im(z) → ∞. To be more rigorous, note that the map z 7→ e2iπz/N is an NZ-periodic map
sending H to the open punctured unit disk centered at 0. With respect to our completion, it
sends R to the unit circle S1 and ∞ to 0. This function has an inverse given by q 7→ N log(q)

2iπ
.

In this context, holomorphy at infinity only means that f
(

N log(q)
2iπ

)
is holomorphic at 0.

For the full modular group SL(2,Z), this condition suffices since the linear transformation
z 7→ az+b

cz+d
send ∞ to a

c
for any a

c
∈ Q. And the existence of b, d ∈ Z is guaranteed for a and

c coprime by Euclid’s algorithm. But for congruence subgroups, there can be more than one
Γ-equivalence class of cusps, so one need to look at holomorphy at each of them.

4. The spaces Mk(Γ) and Sk(Γ) are all of finite dimension. This is one of the reasons for
the good behavior of modular forms, because it makes coincidences frequent. Moreover, for
negative k, these spaces are equal to {0}. Also, for Γ = SL(2,Z) or Γ(2), the space is also
empty for odd k. This is because of the matrix −Id ∈ SL(2,Z). Hence, for f ∈ Mk(Γ), we
have f = f [−Id]k = (−1)kf , so f = 0.

A natural way to extend the definition above is to allow poles of finite order at the cusps, by
making the Fourier series begin at a negative integer. This leads to the following definition:

Definition 3.2. Let k an integer and Γ a congruence subgroup containing Γ(N) for some N . A
weakly holomorphic modular form of weight k and group Γ is a holomorphic function f : H → C
such that:

1. f [γ]k = f for all γ ∈ Γ;

2. For all γ ∈ SL(2,Z), the Fourier expansion of f [γ]k is of the form

f [γ]k(z) =
∞∑

n=n0

fγ, n
N
e2iπ

n
N
z,

for some fixed n0 ∈ Z.

The space of weakly holomorphic modular forms of weight k and group Γ is denoted M!
k(Γ).

Remark. Unlike the space of modular forms, the space of weakly holomorphic modular forms is
infinite dimensional. But in return, there exist non-zero weakly holomorphic modular forms of
negative weight.

Another natural way to extend the definition of modular forms is to extend its series, not with
an expansion giving poles at cusps, but with a finite expansion in Im(z)−1.

Definition 3.3. Let k an integer and Γ a congruence subgroup. An almost holomorphic modular
form of weight k and group Γ is a polynomial f(z) =

∑r
j=1 fj(z)y

−j in y = Im(z) such that:

1. f [γ]k = f for all γ ∈ Γ.

2. Each fj is a holomorphic function which is holomorphic at all cusps.

r is the depth of f (if it is minimal, i.e. fr ̸= 0). A quasimodular form is the constant term f0
of an almost holomorphic modular form f . The space of quasimodular form of weight k, depth
r and group Γ is denoted M̃(r)

k (Γ). We also have the graded M̃(Γ) :=
⊕

k

⋃
r≥0 M̃

(≤r)
k (Γ) of all

quasimodular forms on the group Γ.
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Proposition 3.4. Let ϕ a quasimodular form of weight 2 on Γ which is not modular. Then every
quasimodular form on Γ is a polynomial in ϕ with modular forms as coefficients. More precisely,
for all k, p ≥ 0,

M̃(≤r)
k (Γ) =

r⊕
j=0

Mk−2j(Γ)ϕ
j.

Proof. Let f0 ∈ M̃(≤r)
k (Γ) an almost holomorphic modular form and f(z) =

∑r
j=0 fj(z)y

−j the
corresponding almost holomorphic modular form. Equation 3.1 tells us that for all γ ∈ Γ and
j = 0, . . . r,

fj[γ]k(z) = (fj(z)y
−j)[γ]k = j(z, γ)−kfr(γz)

|j(z, γ)|2r

yr
= j(z, γ)−kfr(γz)

(
(cz + d)2

y
− 2iyc(cz + d)

)r

Expanding the factor in r, we get the term j(z, γ)2j−ky−jfj(γz) and other terms of lower power
in y−1. Note that the y−r term in f [γ]k is j(z, γ)2r−kfr(γ). Hence, since f [γ]k = f , fr must be a
modular form of weight k − 2r for Γ. In particular, r ≤ k/2 because there is no modular form of
negative weight.

Let ϕ∗ the almost holomorphic modular form corresponding to ϕ. By hypothesis, 1 ≤ r ≤ 2/2
for ϕ∗. Hence, ϕ∗ is the sum of ϕ and a non-zero constant times 1/y. So we can subtract from f a
multiple of (ϕ∗)rfr to cancel the fr term and get an almost holomorphic modular form of smaller
depth. Therefore, the statement follows by induction on the depth r.

Remark. We can also mix the definitions above to get weakly holomorphic quasimodular forms.
They are the constant term of a polynomial in Im(z)−1 with coefficients that are functions with
poles of finite order at the cusps (and the polynomial behaves like a modular form under the action
of a congruence subgroup Γ).

It will be important, for convergence purposes, to have bounds on the Fourier coefficients.

Theorem 3.5. Let f a weakly holomorphic quasimodular form and f(z) =
∑∞

n=n0
fnq

n its Fourier
series. Then, for all n, we have

fn = O
(
eC

√
|n0n|

)
,

with the constant depending on the number of cusps, k and the depth of f .

Remark. References for this result on weakly holomorphic modular forms are given in [14]. It also
gives a more precise formula. The more general result for quasimodular forms is a formula of the
same shape.

3.2 Eisenstein series

Definition 3.6. Let k ≥ 4 an even integer. The weight k Eisenstein series is defined as

Ek(z) :=
1

2ζ(z)

∑
(m,n)∈Z2−(0,0)

1

(mz + n)k
.

Here, ζ denote the Riemann zeta function and the factor 1
2ζ(z)

is a normalization factor. It is

a modular form of weight k for Γ(1) = SL(2,Z). Since k > 2, the sum converges absolutely so we
do not need to specify an order of summation on m and n.
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To prove that Ek[γ]k = Ek for γ ∈ SL(2,Z), we can reduce ourselves to show it for the matrices
S and T . For S, one computes

Ek(Sz) =
1

2ζ(z)

∑
(m,n)∈Z2−(0,0)

1

(−m1
z
+ n)k

= zk
1

2ζ(z)

∑
(m,n)∈Z2−(0,0)

1

(−m+ nz)k
= zkEk(z).

For T , the result is obvious since, for a fixed m, it just translate the summation on n by m.
The holomorphy at infinity is also clear since the absolute convergence implies that all terms of
the sum vanish except for n = 0 when Im(z) → ∞.

Proposition 3.7. The Fourier series of the Eisenstein series is

Ek(z) = 1 +
2

ζ(1− k)

∞∑
n=1

σk−1(n)e
2πinz,

with σk(n) :=
∑

d|n d
k.

Proof. We use the following representation of the cotangent function:

π cot(πz) =
1

z
+

∞∑
n=1

(
1

z − n
+

1

z + n

)
.

A nice elementary proof of this formula is given in [15]. Denoting q = e2iπz, we also have

π cot(πz) = π
cos(πz)

sin(πz)
= −iπ1 + q

1− q
= −iπ − 2iπ

∞∑
n=1

qn.

Differentiating k − 1 times these two expressions, we get

(−1)k−1(k − 1)!

(
1

zk
+

∞∑
n=1

(
1

(z − n)k
+

1

(z + n)k

))
= −(2iπ)k

∞∑
n=1

nk−1qn

We rewrite this as ∑
n∈Z

1

(z + n)k
=

(−2iπ)k

(k − 1)!

∞∑
n=1

nk−1qn.

Hence, for even k,∑
(m,n)∈Z2−(0,0)

1

(mz + n)k
= 2ζ(k) + 2

∞∑
m=1

∑
n∈Z

1

(mz + n)k
= 2ζ(k) + 2

∞∑
m=1

(2iπ)k

(k − 1)!

∞∑
n=1

nk−1qmn

Rearranging the terms, we get that

Ek(z) = 1 +
(2iπ)k

(k − 1)!ζ(k)

∞∑
m=1

σk−1(m)qm.

We conclude by applying the functional equation of the zeta function:

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s).

Note that sin
(
πk
2

)
Γ(1− k) = (−1)k/2π

2
(−1)k

(k−1)!
= ikπ

2(k−1)!
by cancellation of the zero of the sine and

the pole of the gamma function.
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Definition 3.8. This series also make sense for k = 2, so we define

E2(z) = 1− 24
∞∑
n=1

σ1(n)e
2iπnz.

This function is not modular. However, it is Z-periodic and satisfies

z−2E2(−1/z) = E2(z)−
6i

πz
. (3.2)

A proof of this formula is given in [12], chapter 2.3 of Zagier’s part. This is an example of a
quasimodular form. One of the most important properties of the Eisenstein series is that they give
a basis of the modular forms for the full modular group Γ(1).

Theorem 3.9. The graded ring M(SL(2,Z)) is isomorphic to C[E4, E6] as a C-algebra.

Proof. See [12], proposition 4, chapter 2 of Zagier’s part.

Corollary 3.10. E2 is a quasimodular form of weight 2 and depth 1, and the graded ring M̃(SL(2,Z))
is isomorphic to C[E2, E4, E6].

Proof. E2 is the constant term of the almost holomorphic modular form f(z) := E2(z)− 3
πy
. f(z)

is clearly 1-periodic and using the equation 3.1, we get that

z−2f(−1/z) = E2(z)−
6i

πz
− 3|z|2

πyz2
= E2(z)−

6i

πz
− 3z̄

πy
= E2(z)−

6i

πz
+

6iy

πyz
− 3z

πyz
= f(z).

The second statement follows directly from the theorem and proposition 3.4.

Remark. This corollary allows us to understand how a quasimodular form on SL(2,Z) behaves.
Since E2 is 1-periodic, as well as E4 and E6. So is any quasimodular form on Γ(1). Moreover, if

f ∈ M̃(r)
k (Γ(1)) is a quasimodular form of weight k and depth r, then f(−1/z)z−k is equal to the

sum of f(z) and some other factors in 1
z
, . . . , 1

zr
coming from the equation 3.2 for E2(−1/z)z−2.

Definition 3.11. The discriminant function is defined by

∆(z) = q
∞∏
n=1

(1− qn)24,

with q = e2iπz. For z ∈ H, we have |e2iπz| < 1, so by usual properties of Euler products, the
product converges and defines a non-zero holomorphic function.

Remark. The name of this form comes from the theory of elliptic curves. It corresponds to the
discriminant of the curve C/(Z+ zZ). Elliptic curves are closely related to modular forms but we
will not discuss that theory here.

Proposition 3.12. The function ∆ is a cusp form of weight 12 and group Γ(1) equal to 1
1728

(E3
4 −

E2
6).

Proof (sketch). For the proof that ∆ is a modular form of weight 12, see [12]. It relies on derivative
of modular forms. A subject we will not discuss here. Looking at the definition of ∆, it is obvious
that it is a cusp form. From theorem 3.9, we know that it must be a linear combination of E3

4 and
E2

6 . Since it is a cusp form, ∆ is equal to a constant times E3
4 −E2

6 . Looking at the first non-zero
Fourier coefficient of ∆, we conclude that this constant is 1

1728
.
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3.3 Theta series

Definition 3.13. The Thetanullwerte are the functions:

θ00(z) =
∑
n∈Z

eiπn
2z

θ01(z) =
∑
n∈Z

(−1)neiπn
2z

θ10(z) =
∑
n∈Z

eiπ(n+
1
2
)2z

These functions come from the Jacobi theta function

ϑ : C×H → C, (z, τ) 7→
∑
n∈Z

eiπn
2τ+2iπnz.

Since Im(τ) > 0, the series converges. ϑ(z, τ) appears in various forms in a lot of different
contexts. A quite extensive exposition of this function is given in [16]. For example, it gives the
unique solution to the one-dimensional heat equation ∂ϑ

∂τ
= 1

4π
∂2ϑ
∂z2

with a periodic initial data. It
also comes naturally as invariant function under the two following actions on complex maps f (for
a fixed τ ∈ H):

(Sbf)(z) := f(z + b) (Taf)(z) := eiπa
2τ+2iπazf(z + aτ).

Our functions are the special values

θ00(τ) = ϑ(0, τ)

θ01(τ) = (S 1
2
ϑ)(0, τ) = ϑ(1

2
, τ)

θ10(τ) = (T 1
2
ϑ)(0, τ) = eiπτ/4ϑ(1

2
τ, τ)

We also have the function θ11(τ) = (S 1
2
T 1

2
ϑ)(0, τ), but it is null everywhere:

θ11(τ) = eiπτ/4+iπ/2ϑ(1
2
τ + 1

2
, τ) =

∑
n∈Z

eiπτ/4+iπ/2eiπn
2τ+iπn(τ+1)

=
∑
n∈Z

eiπτ(n
2+n+ 1

4
)eiπ(n+

1
2
) = i

∑
n∈Z

(−1)neiπτ(n+
1
2
)2 = 0.

The sum vanishes because the n+ 1
2
term cancel with the −(n+1)+ 1

2
one. Our theta functions

satisfy the following modular relations:

θ400(z + 1) = θ401(z) θ401(z + 1) = θ400(z) θ410(z + 1) = −θ410(z)

and

z−2θ400

(
−1

z

)
= −θ400(z) z−2θ401

(
−1

z

)
= −θ410(z) z−2θ410

(
−1

z

)
= −θ401(z)

So these functions behave like a modular form of 1
2
weight would. In particular, θ400, θ

4
01 and

θ410 are modular forms of weight 2 and group Γ(2). The first three relations are easy to prove and
the last three come from the following general transformation formula.
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Lemma 3.14. Let θa(z) :=
∑

n∈Z e
iπ(n+a)2z, for a ∈ R. Then

θa(z) =
1√
iz

∑
n∈Z

e−iπn2/ze2iπan

Proof. We denote θ̃a(z) :=
∑

n∈Z e
π(n+a)2z, so θ̃a(iz) = θa(z). Using Poisson summation formula

(theorem 2.7) for the lattice Z ⊆ R and the shift y = 0, we get

θ̃a(z) =
∑
n∈Z

eπ(n+a)2z =
∑
n∈Z

Fn

(
eπ(n+a)2z

)
,

where the Fourier transform is on the variable n. In the next section, we will see in lemma 3.19
that this Fourier transform is in fact

Fn

(
eπ(n+a)2z

)
= z−1/2eπn

2/ze2iπan.

We also used the classical rule Fn(f(n+ n0))(m) = e2iπn0mf(m). We conclude that

θ̃a(z) =
1√
z

∑
n∈Z

eπn
2/ze2iπan.

Transposing to the imaginary axis via z 7→ iz, we get

θa(z) = θ̃a(iz) =
1√
iz

∑
n∈Z

e−iπn2/ze2iπan.

We get the transformation formula for θ00 by taking a = 0 and for θ01 and θ10 by taking a = 1
2

and using that z 7→ −1
z
is its own inverse.

Proposition 3.15 (Jacobi identity). The Jacobi theta functions satisfy

θ401 + θ410 = θ400.

Proof. The proof relies on the following identity of quadratic forms:

(n1+n2+n3+n4)
2+(n1+n2−n3−n4)

2+(n1−n2+n3−n4)
2+(n1−n2−n3+n4)

2 = 4(n2
1+n

2
2+n

2
3+n

2
4).

We will prove
θ400 + θ401 + θ410 + θ411 = 2θ400.

Since θ11 is zero everywhere, this is equivalent to the proposition. The left-hand side is:

θ400(z) + θ401(z) + θ410(z) + θ411(z) =
∑

n1,n2,n3,n4∈Z

(
eiπzΣn2

i + (−1)ΣnieiπzΣn2
i + eiπzΣ(ni+

1
2
)2

+(−1)ΣnieiπzΣ(ni+
1
2
)2
)
=

∑
(n1,n2,n3,n4)∈Z4∪(Z+ 1

2
)4

n1+n2+n3+n4≡0 mod 2

2eiπzΣn2
i .
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The sums in the exponentials always go from i = 1 to 4. The first equality is obtained by
expanding each power and the second one by canceling the terms and regrouping everything in
one sum. Let

m1 =
1

2
(n1 + n2 + n3 + n4),

m2 =
1

2
(n1 + n2 − n3 − n4),

m3 =
1

2
(n1 − n2 + n3 − n4),

m4 =
1

2
(n1 − n2 − n3 + n4).

The identity above implies that

m2
1 +m2

2 +m2
3 +m2

4 = n2
1 + n2

2 + n2
3 + n2

4.

Moreover, in the sum, n1 + n2 + n3 + n4 ≡ 0 (mod 2) and the ni are all in Z or all in Z+ 1
2
. It

implies that the mi are all in Z. One can easily compute that it is even a bijection to Z4. Hence,
we conclude that:

θ400(z) + θ401(z) + θ410(z) + θ411(z) =
∑

m1,m2,m3,m4∈Z

2eiπzΣmi = 2θ400(z).

Proposition 3.16. The relation between the theta functions and the modular discriminant is

256∆ = θ800θ
8
01θ

8
10.

Proof. Up to a constant, ∆ is the only cusp form of weight 12 on Γ(1). Hence, one just need to see
that the function on the right is also a cusp form for Γ(1) and compare the Fourier coefficients.

Theorem 3.17. θ01 and θ10 forms a basis of the modular forms over Γ(2), i.e. M(Γ(2)) ∼=
C[θ401, θ410].

Proof. See [9], section 2.1.2.

3.4 Laplace transform

The Laplace transform is an integral operator on functions, similar to the Fourier transform. One
advantage of this operator in regards to the Fourier transform is that it takes initial conditions into
account. Here, our interest is that it can be seen as a continuous combination of eigenfunctions of
the Fourier transform. Hence, it will be useful for our constructions of the magic functions as a
sum of two eigenfunctions of the Fourier transform, of eigenvalues +1 and −1.

Definition 3.18. Let f : R≥0 → C an L1 function. The Laplace transform of f is

L(f)(s) :=
∫ ∞

0

f(t)e−stdt.

We will consider the evaluation of Laplace transform at s = π|x|2, for some x ∈ Rn. In one
dimension, it relates to the function e−πx2

which is a eigenfunction of the Fourier transform.
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Lemma 3.19. The Gaussian e−πx2
is an eigenfunction of the Fourier transform of eigenvalue 1:

F
(
e−πx2

)
(y) =

∫ ∞

−∞
e−πx2

e−2iπxydx = e−πy2

More generally, for x ∈ Rn and a ∈ C\R≤0, the n-dimension Fourier transform of e−aπ|x|2 is
given by:

F
(
e−aπ|x|2

)
(y) =

∫
Rn

e−aπ|x|2e−2iπ⟨x,y⟩dx = a−n/2e−π|y|2/a,

for all y ∈ Rn, where a1/2 is the only square root of a with real part greater than 0.

Proof. We denote g(y) := F
(
e−aπ|x|2

)
(y). If we differentiate g with respect to y1, we get

∂g

∂y1
(y) = −2iπ

∫
Rn

x1e
−aπ|x|2e−2iπ⟨x,y⟩dx.

Integrating by parts with respect to x1, we obtain

∂g

∂y1
(y) =

∫
Rn−1

[(
i

a
e−aπ|x|2

)
e−2iπ⟨x,y⟩

]∞
x1=−∞

dx2 . . . dxn −
∫
Rn

(
i

a
e−aπ|x|2

)(
−2iπy1e

−2iπ⟨x,y⟩) dx
= −2πy1

a

∫
Rn

e−aπ|x|2y1e
−2iπ⟨x,y⟩dx = −2πy1

a
g(y).

This gives a one-dimensional differential equation that one easily solves to get

g(y) = C(y2, . . . , yn)e
−πy21/a,

where the constant depends on all the other coordinates y2, . . . , yn. Doing the same computation
for each coordinate yi, i = 1, . . . , n, we conclude that

g(y) = ce−π|y|2/a.

Finally, we just have to evaluate g to find the value of the constant. We begin in one dimension.
We get

g(0) =

∫ ∞

−∞
e−aπx2

dx =

∫ a∞

−a∞

1√
a
e−πx2

dx,

We made the change of variable x 7→
√
ax, with the complex square root such that Re(

√
a) > 0.

Writing the integral with limits and using the holomorphy of the function, we have∫ a∞

−a∞

1√
a
e−πx2

dx = lim
r→∞

∫ ar

−ar

1√
a
e−πx2

dx

= lim
r→∞

(∫ −r

−ar

1√
a
e−πx2

dx+

∫ r

−r

1√
a
e−πx2

dx+

∫ ar

r

1√
a
e−πx2

dx

)
.

The first and the last integrals are bounded by r|a|1/2e−πr2 and therefore converge to 0. We
conclude that

g(0) =

∫ ∞

−∞
e−aπx2

dx =
1√
a

∫ ∞

−∞
e−πx2

dx =
1√
a
,
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by using the classical result that
∫∞
−∞ e−πt2dt = 1.

We can now compute the constant c:

c = g(0) =

∫
Rn

e−aπ|x|2dx =

(∫ ∞

−∞
e−aπydy

)n

= a−n/2,

If f is sufficiently well behaved (like an admissible or a Schwartz function), then one can
compute the Fourier transform of the function

g(x) := L(f)(π|x|2) =
∫ ∞

0

f(t)e−π|x|2tdt

by exchanging integrals. For x ∈ Rn, the result is

ĝ(x) =

∫ ∞

0

f(t)t−n/2e−π|x|2/tdt =

∫ ∞

0

f

(
1

t

)
tn/2−2e−π|x|2tdt,

where we made the change of variable t 7→ 1
t
in the last equality. We see that taking the Fourier

transform is the same as replacing f(t) by tn/2−2f(1/t). This looks like the transformation formula
of some modular form. In particular, if f(t) = ϕ(it), where ϕ is a modular form of weight
k = 2− n/2, we have that f(1/t) = ϕ(i/t) = ϕ(−1/it) = (it)kϕ(it) = (it)kf(t), hence ĝ = i2−n/2g,
i.e. g is an eigenfunction of the Fourier transform. This is how we use modular forms and Laplace
transform to construct the magic functions. For now, this approach seems to have two problems.
First, this only gives a function of eigenvalue ik, here of eigenvalue −1 in both cases. This is not
a big issue since there is a lot of variants of the classical definition of modular forms and one can
construct eigenfunctions with other eigenvalues. The second problem is a more serious obstacle.
We don’t have any control on the zeros of the eigenfunction constructed using Laplace transform.
To deal with this, Viazovska inserted by brute force the desired roots with a sine factor in front
of the Laplace transform. As we will see below, both eigenfunctions in dimensions 8 and 24 have
the form

sin(π|x|2/2)2
∫ ∞

0

f(t)e−π|x|2tdt.

One big difficulty is then to control the behavior of this function under the Fourier transform.
We have to understand which conditions must satisfy ϕ under inversion to be an eigenfunction.

4 The sphere packing problem in dimension 8

In this chapter, we construct the two Fourier eigenfunctions with zeros at all non-zero lattice
points and combine them to get a tight bound for the density of a sphere packing in 8 dimensions.
We first detail the construction for the positive eigenfunction. We derive from this construction
sufficient conditions on the function to have all the right properties. These conditions are mostly
valid in 24 and other dimensions divisible by 8. Then we use these conditions to find the first
eigenfunction inside a finite dimensional space. In the second section, we adapt the conditions
to get another eigenfunction with −1 eigenvalue. We conclude by creating a function combining
these two eigenfunction that satisfies the conditions of theorems 2.8 and 2.9 and that gives the
right bound on the sphere packing density.
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4.1 The +1 Fourier eigenfunction

We begin by the construction of a +1 Fourier eigenfunction in 8 dimensions. To simplify the
computations, we define our functions such that they take imaginary values. Following the ideas
of the introduction and the remark below theorem 2.8, we look for a function satisfying the following
properties:

1. It has double zeros at all vector length
√
2k for k ≥ 2, a simple zero at |x| =

√
2 and does

not vanish at 0.

2. It takes purely imaginary values.

3. Its 8-dimensional Fourier transform is itself.

4. It is a radial Schwartz function.

We do the computations mostly in a general setting, to be able to apply the same results to
the other cases. Our reduction on dimension is only that 8 divides n. This condition is mainly
useful to simplify in/2 = 1. What follows can probably also be done for n ≡ 4 (mod 8) or even
n ≡ 2, 6 (mod 8).

We take a slightly different function than the one proposed in the end of last chapter. We
suppose our function is of the form

a(x) = sin(π|x|2/2)2
∫ i∞

0

ϕ

(
−1

t

)
t−keiπ|x|

2tdt, (4.1)

where k = 2− n/2 and ϕ is a function satisfying some modular properties related to the weight k.
We will see that in fact ϕ is a quasimodular form of weight k+2 and depth 2 on SL(2,Z). Hence,
evaluating ϕ at −1/t instead of t and adding a t−k term gives factors in t and t2, as explained
in the remark after corollary 3.10. We will see that these factors cancel the zeros in excess and
simplify the Fourier transform of a(x). Also, ϕ is 1-periodic.

To get some information on a(x), we will rewrite this function in two other forms. The second
form is an expansion of ϕ when Im(t) → ∞. The desired location of the zeros gives us a condition
on this expansion. This will imply that ϕ should be a quasimodular form of depth at least 1. This
form also gives a condition to ensure that we have a purely imaginary valued function. To get
the third form, we expand the sine and deform the integration paths. Our requirement that a(x)
is a Fourier eigenfunction implies that the depth of ϕ is 2. This form also allows us to compute
that a(x) is a Schwartz function at the price of a condition on the Fourier expansion of ϕ. Finally,
these two forms are holomorphic as a function of r = |x| and equal in a neighborhood of +∞.
Therefore, they are equal everywhere by analytic continuation.

In the end of this section, we compute the function for n = 8 using the conditions we found
on ϕ. A computer algebra system will be required for these calculations. We get a function of the
form ϕ = Φ

∆
, where Φ is a quasimodular form of weight 12 and ∆ is the modular discriminant.

4.1.1 The zeros and the imaginary values

We first look at the location of the zeros of a(x) to get information on its Fourier series. Here, we
go back to the real notations for the Laplace transform, i.e.

a(x) = −i sin(π|x|2/2)2
∫ ∞

0

ϕ

(
i

t

)
t−ke−π|x|2tdt
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The squared sine gives double zeros at each lattice point and a zero of degree 4 at 0, because of
the |x|2 term inside. So what we would like is a pole of degree four at 0 and a pole of degree one
at |x| =

√
2 for the Laplace transform of ϕ. Since ϕ is 1-periodic, it admits a Fourier series. If ϕ

is a quasimodular form, ϕ(i/t) can be written as a series in terms of the form tje−2πtm. Therefore,
we begin by computing Laplace transforms corresponding to this. Let m ∈ Z, j ∈ N and x ∈ Rn

such that |x|2 > −2m. We have

L(e−2πtm)(π|x|2) =
∫ ∞

0

e−πt(2m+|x|2)dt = − 1

π(2m+ |x|2)
e−πt(2m+|x|2)

∣∣∣∣∞
0

=
1

π(2m+ |x|2)
,

L(tje−2πtm)(π|x|2) =
∫ ∞

0

tje−πt(2m+|x|2)dt = − tj

π(2m+ |x|2)
e−πt(2m+|x|2)

∣∣∣∣∞
0

+
j

π(2m+ |x|2)

∫ ∞

0

tj−1e−πt(2m+|x|2)dt =
j!

(π(2m+ |x|2))j+1
,

where the last equality follows by induction on k. To cancel the zeros of the sine, we want a term
in e2πt to have a simple pole for |x| =

√
2 and a term in t to have a pole of degree 4 for x = 0.

This gives an expansion of ϕ of the form

ϕ

(
i

t

)
t−k = ce2πt + (dt+ f) +O(tme−2πt), (4.2)

as t→ ∞, for c and d non-zero constants. All of this is only valid for |x| >
√
2, because our minimal

Fourier coefficient is m = −1. A way to get the expansion above is that ϕ is a quasimodular form
of depth at least 1. We rewrite the function as

a(x) =− i sin(π|x|2/2)2
(

c

π(|x|2 − 2)
+

d

π2|x|4
+

f

π|x|2
(4.3)

+

∫ ∞

0

(
ϕ

(
i

t

)
t−k − (ce2πt + dt+ f)

)
e−π|x|2tdt

)
.

This is the second form of a(x) we consider. It is obtained by integrating the expansion 4.2 term
by term. Now, the integral converges everywhere and the function has the right zeros. Moreover,
we see that if ϕ take real values on the imaginary line, the values of a(x) are purely imaginary.
This is the case for instance if the Fourier coefficients of ϕ are all real. With this condition, we will
ensure us to create a real-valued function in the end. Moreover, considering a(r) as a 1-dimensional
function of r = |x|, one can compute all its derivatives by exchanging the limit with the integral
if it is allowed. This gives an integral in a′(r) of the form

−rπ
∫ ∞

0

ϕ

(
1

t

)
t−k+1e−πr2tdt,

where r = |x| and we took a radial derivative. a(r) is analytic if the integral converges. This is
the case in equation 4.3 with our modified Fourier expansion. Hence, the first form 4.1 converges
only for r >

√
2 and the second form is an analytic continuation of it to r ≥ 0.

4.1.2 The Fourier transform

Now, we want a(x) to be an eigenfunction of the Fourier transform, using the modular properties
of ϕ. One can directly compute the Fourier transform of a(x), just by expanding the sine as a sum
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of exponentials and inserting the Fourier transform inside the integrals. This does not conclude,
mainly because the bounds of the integrals change during the computation. Instead of doing this,
we deform our paths of integration so that they all go through i and use the invariance of i under
the inversion t 7→ −1

t
.

First, developing the sine we get

sin(π|x|2/2)2 = −1

4

(
eiπ|x|

2/2 − e−iπ|x|2/2
)2

=
1

4

(
2− eiπ|x|

2 − e−iπ|x|2
)
.

Hence, the function a(x) can be written as the sum

4a(x) = 2

∫ i∞

0

ϕ

(
−1

t

)
t−keiπ|x|

2tdt−
∫ i∞

0

ϕ

(
−1

t

)
t−keiπ|x|

2(t+1)dt−
∫ i∞

0

ϕ

(
−1

t

)
t−keiπ|x|

2(t−1)dt

= 2

∫ i∞

0

ϕ

(
−1

t

)
t−keiπ|x|

2tdt−
∫ i∞+1

1

ϕ

(
−1

t− 1

)
(t− 1)−keiπ|x|

2tdt

−
∫ i∞−1

−1

ϕ

(
−1

t+ 1

)
(t+ 1)−keiπ|x|

2tdt.

We deform the integration paths to make them all pass through i. We use equation 4.2 to see
that the integral vanishes at infinity if |x| is big enough (to be precise, |x| >

√
2).

4a(x) = 2

∫ i

0

ϕ

(
−1

t

)
t−keiπ|x|

2tdt+ 2

∫ i∞

i

ϕ

(
−1

t

)
t−keiπ|x|

2tdt

−
∫ i

1

ϕ

(
−1

t− 1

)
(t− 1)−keiπ|x|

2tdt−
∫ i∞

i

ϕ

(
−1

t− 1

)
(t− 1)−keiπ|x|

2tdt

−
∫ i

−1

ϕ

(
−1

t+ 1

)
(t+ 1)−keiπ|x|

2

dt−
∫ i∞

i

ϕ

(
−1

t+ 1

)
(t+ 1)−keiπ|x|

2

dt

= 2

∫ i

0

ϕ

(
−1

t

)
t−keiπ|x|

2tdt−
∫ i

1

ϕ

(
−1

t− 1

)
(t− 1)−keiπ|x|

2tdt−
∫ i

−1

ϕ

(
−1

t+ 1

)
(t+ 1)−keiπ|x|

2tdt

+

∫ i∞

i

(
2ϕ

(
−1

t

)
t−k − ϕ

(
−1

t− 1

)
(t− 1)−k − ϕ

(
−1

t+ 1

)
(t+ 1)−k

)
eiπ|x|

2tdt

We know from lemma 3.19 and the discussion at the end of last chapter that the Fourier
transform gives a change of variable t 7→ −1

t
. Hence, if all goes well, it will exchange the two

middle integrals and the first and the last one. This gives a condition on ϕ̃(t) := 2ϕ
(
−1

t

)
t−k −

ϕ
( −1
t−1

)
(t− 1)−k − ϕ

( −1
t+1

)
(t+ 1)−k.

Proposition 4.1. Suppose that ϕ̃ = −2ϕ. Then a(x) is an eigenfunction of the Fourier transform.

Proof. Lemma 3.19 tells us that the Fourier transform of the first integral of 4a(x) is

F
(∫ i

0

ϕ

(
−1

t

)
t−keiπ|x|

2tdt

)
=

∫ i

0

ϕ

(
−1

t

)
t−k(−it)−n/2eiπ|x|

2(−1
t )dt = −

∫ i∞

i

ϕ (t) eiπ|x|
2tdt.

In the last equality, we made the change of variable t 7→ −1
t
and used that 8 divides n to
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simplify (−i)n/2. Similarly, the Fourier transforms of the other integrals are

F
(∫ i

1

ϕ

(
−1

t− 1

)
(t− 1)−keiπ|x|

2tdt

)
=

∫ i

1

ϕ

(
−1

t− 1

)
(t− 1)−kt−n/2eiπ|x|

2(−1
t )dt

=

∫ i

−1

ϕ

(
−1

−1
t
− 1

)(
−1

t
− 1

)−k

t−keiπ|x|
2tdt

=

∫ i

−1

ϕ

(
1− 1

t+ 1

)
(t+ 1)−keiπ|x|

2tdt

=

∫ i

−1

ϕ

(
−1

t+ 1

)
(t+ 1)−keiπ|x|

2tdt

F
(∫ i

−1

ϕ

(
−1

t+ 1

)
(t+ 1)−keiπ|x|

2tdt

)
=

∫ i

1

ϕ

(
−1

−1
t
+ 1

)(
−1

t
+ 1

)−k

t−keiπ|x|
2tdt

=

∫ i

1

ϕ

(
−1

t− 1

)
(t− 1)−keiπ|x|

2tdt

F
(∫ i∞

i

ϕ̃(t)eiπ|x|
2tdt

)
=

∫ i∞

i

ϕ̃(t)t−n/2eiπ|x|
2(−1

t )dt

= −
∫ i

0

ϕ̃

(
−1

t

)
t−keiπ|x|

2tdt

We used that ϕ is 1-periodic and that k is even. Using ϕ̃(t) = −2ϕ(t), the last integral is equal
to

2

∫ i

0

ϕ

(
−1

t

)
t−keiπ|x|

2tdt.

Combining all together, we see that a(x) is a Fourier eigenfunction.

Proposition 4.1 supposes that −2ϕ(t) = 2ϕ
(
−1

t

)
t−k−ϕ

( −1
t−1

)
(t−1)−k−ϕ

( −1
t+1

)
(t+1)−k. This

can be simplified. We saw that ϕ has to be a quasimodular form of depth at least 1 and weight
k + 2. If it is actually of depth 2, we have, according to corollary 3.10, that

ϕ(−1/t)t−k = ϕ(t)t2 + ϕ1(t)t+ ϕ2(t),

where ϕ1 and ϕ2 are 1-periodic function. Then:

ϕ̃(t) = 2ϕ

(
−1

t

)
t−k − ϕ

(
−1

t− 1

)
(t− 1)−k − ϕ

(
−1

t+ 1

)
(t+ 1)−k

= 2ϕ(t)t2 − ϕ(t− 1)(t− 1)2 − ϕ(t+ 1)(t+ 1)2

+ 2ϕ1(t)t− ϕ1(t− 1)(t− 1)− ϕ1(t+ 1)(t+ 1)

+ 2ϕ2(t)− ϕ2(t+ 1)− ϕ2(t− 1)

= −2ϕ(t).
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In conclusion, the third form of a(x) that we consider is

4a(x) = 2

∫ i

0

ϕ

(
−1

t

)
t−keiπ|x|

2tdt−
∫ i

1

ϕ

(
−1

t− 1

)
(t− 1)−keiπ|x|

2tdt (4.4)

−
∫ i

−1

ϕ

(
−1

t+ 1

)
(t+ 1)−keiπ|x|

2tdt− 2

∫ i∞

i

ϕ(t)eiπ|x|
2tdt.

4.1.3 The Schwartz function

The last thing we have to check is that our function is admissible. We even prove that it is a
Schwartz function up to some condition. ϕ is 1-periodic so it has a Fourier series. We first suppose
that this series does not have infinitely many coefficients for negative m. Therefore, it is of the
form ϕ(t) =

∑∞
m=m0

fmq
m, where q = e2iπt as usual. Since ϕ is a quasimodular form, the bound of

theorem 3.5 applies, i.e. |fm| ≤ C1e
C2

√
|m0m| with C1, C2 positive constants. So if Im(t) > 1/2, we

have the bound

|ϕ(t)| =

∣∣∣∣∣
∞∑

m=m0

fmq
m

∣∣∣∣∣ ≤
∣∣∣∣∣∣
(C2+1)2|m0|−1∑

m=m0

fmq
m

∣∣∣∣∣∣+
∣∣∣∣∣∣

∞∑
m=(C2+1)2|m0|

fmq
m

∣∣∣∣∣∣
≤ e−2πm0

(C2+1)2|m0|−1∑
m=m0

|fm|e−2π(m−m0) Im(t) + C1

∞∑
m=(C2+1)2|m0|

eC2

√
|m0|me−2πm Im(t)

≤ e−2πm0

(C2+1)2|m0|−1∑
m=m0

|fm|+ C1

∞∑
m=(C2+1)2|m0|

e
C2

√
m2

(C2+1)2 e
−2π Im(t)

(
C2
2+2C2

(C2+1)2
m+|m0|

)

≤ C3e
−2πm0 + C1e

−2π|m0| Im(t)

∞∑
m=(C2+1)2|m0|

e
C2

C2+1
m
e
−π

C2
C2+1

m
e
−π

C2
(C2+1)2

m

≤ Ce−2πm0 Im(t),

with the positive constant C depending on m0. In the third line, we used that m ≥ (C2 + 1)2|m0|
in the second sum. The last inequality used that the sum on the fourth line converges.

Now, we approximate the first integral in the third form (equation 4.4) of a(x):∣∣∣∣∫ i

0

ϕ

(
−1

t

)
t−keiπ|x|

2tdt

∣∣∣∣ = ∣∣∣∣∫ i

i∞
ϕ(t)t−n/2e−iπ|x|2/tdt

∣∣∣∣ ≤ C

∫ ∞

1

e−2πm0te−π|x|2/tdt.

We see that we need at least m0 ≥ 1 to have the convergence of the integral at ∞. This
gives another condition on ϕ. For the second and the third integrals, we have the same kind of
computation:∣∣∣∣∫ i

1

ϕ

(
−1

t− 1

)
(t− 1)−keiπ|x|

2tdt

∣∣∣∣ =
∣∣∣∣∣
∫ −1

i−1

i∞
ϕ(t)t−n/2e

iπ|x|2
(−1

t
+1

)
dt

∣∣∣∣∣ ≤ C

∫ ∞

1/2

e−2πm0te−π|x|2/tdt

∣∣∣∣∫ i

−1

ϕ

(
−1

t+ 1

)
(t+ 1)−keiπ|x|

2tdt

∣∣∣∣ =
∣∣∣∣∣
∫ −1

i+1

i∞
ϕ(t)t−n/2e

iπ|x|2
(−1

t
−1

)
dt

∣∣∣∣∣ ≤ C

∫ ∞

1/2

e−2πm0te−π|x|2/tdt
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We can give the same bound to these three integrals. To do this, we can compare it to a
K-Bessel function (as in Viazovska’s paper) or more elementary, we can split it in two parts:∫ ∞

1/2

e−2πm0te−π|x|2/tdt ≤
∫ |x|

1/2

e−2πte−π|x|2/tdt+

∫ ∞

|x|
e−2πte−π|x|2/tdt

≤ e−π|x|
∫ |x|

1/2

e−2πtdt+ |x|2
∫ ∞

|x|−1

e−2π|x|2te−π/tdt

≤ C ′e−π|x| + |x|2
∫ ∞

|x|−1

e−2π|x|2tdt ≤ C ′e−π|x| − 1

2π
e−2π|x|2t

∣∣∣∣∞
|x|−1

≤ C ′′e−π|x|

For the last integral, the computation is a bit different but easier:∣∣∣∣∫ i∞

i

ϕ(t)eiπ|x|
2tdt

∣∣∣∣ ≤ C

∫ ∞

1

e−2πm0te−π|x|2tdt ≤ C
e−π(2m0+|x|2)

π(2m0 + |x|2)
≤ C∞

e−π|x|2

|x|2
.

Hence, there exist constants C ′′ and C∞ such that

|a(x)| ≤ C ′′e−π|x| + C∞
e−π|x|2

|x|2
.

So a(x) decrease faster at infinity that any inverse power of polynomials. And this is also true
for any derivative of a(r), as a function of r = |x|, because each derivation just add a polynomial
factor in the integral. So integrating by parts returns us to the case before, up to a rational
function in |x|. Therefore, a(r) is a Schwartz function. These bounds also prove that the form 4.4
converges for all x ∈ Rn. Hence, it is even an analytic function as a function of r. By analytic
continuation, it is equal to the form 4.3.

We got all the conditions we need. Note again that everything we did is independent of the
dimension (as long as 8 divides n). Here is the summary of what is above:

Theorem 4.2. Let n a multiple of 8, k = 2 − n/2 and ϕ a quasimodular form of depth 2 and
weight k + 2 on Γ(1). If ϕ satisfies:

1. ϕ grows like ϕ(i/t)t−k = ce2πt + (dt+ f) +O(t2e−2πt) as t→ ∞, with c, d ̸= 0.

2. ϕ has real Fourier coefficients.

3. The Fourier series of ϕ is ϕ(t) =
∑∞

m=1 fmq
m.

Then a(x) is a +1 Fourier eigenfunction taking values in iR and a radial Schwartz function with
a simple zero at |x| =

√
2 and double zeros at |x| =

√
2k for all k ≥ 2.

4.1.4 Computation of the function

We begin now the explicit search for the +1 eigenfunction. For n = 8, we have that k+2 = 0. We
don’t have any holomorphic quasimodular form of this weight on SL(2,Z). It’s possible to search
our function is the more general space of weakly holomorphic quasimodular forms, but this space
has infinite dimensions. To reduce us to a better space, we notice that Φ := ∆ϕ is a quasimodular
form of weight 12. Corollary 3.10 tells us that it belongs to the space C[E2, E4, E6]. This space has
4 dimensions and is generated by E2

2E
2
4 , E2E4E6, E

3
4 and E2

6 . The theorem 4.2 can be rewritten
for Φ as:
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Proposition 4.3. Let Φ is a quasimodular form of weight 12 and depth 2 on Γ(1) such that:

1. Φ(i/t)t−10 = c+ (dt+ f)e−2πt +O(t2e−4πt) as t→ ∞, with c, d ̸= 0.

2. The Fourier coefficients of Φ are all reals.

3. The Fourier series of Φ is Φ(t) =
∑∞

m=2 fme
2iπm.

Then ϕ = Φ/∆ satisfies the conditions of theorem 4.2 for n = 8.

The second conditions are equivalents because ∆ has real Fourier coefficients. Our function is
of the form

Φ = αE2
2E

2
4 + βE2E4E6 + γE3

4 + δE2
6 ,

with α, β, γ, δ ∈ C. It is immediate that the Fourier coefficients of Φ are real if α, β, γ, δ are so.
This is the case here because all our equations will be real and linear.

All the Eisenstein series have non-zero Fourier coefficients for m ≥ 0. Hence, we have two
equations on α, β, γ, δ saying that f0 and f1 are zero. The first equation is easy since all Eisenstein
series are normalized with a first Fourier coefficient equal to 1. Hence, it is just α+ β + γ + δ = 0.
The second equation can be written by hand but it is easier to use a computer algebra system.
We speak more about that kind of software bellow.

The two other equations are given using the transformation formula of the Eisenstein series,
and in particular E2. Recall that E4 and E6 are modular forms on Γ(1) and that

E2(−1/t)t−2 = E2(t)−
6i

πt
.

Hence, the transformation formula for Φ is

Φ(i/t)t−10 = αt2
(
E2(t)−

6

πt

)2

E4(t)
2 + βt2

(
E2(t)−

6

πt

)
E4(t)E6(t) + γt2E4(t)

3 + δt2E6(t)
2

(4.5)

= Φ(it)t2 − 6t

π

(
2αE2(t)E4(t)

2 + βE4(t)E6(t)
)
+

36α

π2
E4(t)

2.

To get the right expansion, we have to ensure two things. First, we want a constant factor c ̸= 0.
This is only the case if α ̸= 0. Since we are searching our function only up to a multiplicative
constant, we can suppose that α = 1. The second condition is for the factors in t. They are
given by 6it

π
(2αE2(t)E4(t)

2 + βE4(t)E6(t)). We do not want a t factor but only a te−2πt one. This
can be done by canceling the first term of the Fourier transforms. Since the Eisenstein series are
normalized, this gives the equation 2α + β = 0. Looking at the Fourier expansion of E4 and E6,
we see that the second Fourier coefficient does not vanish in this case.

Thus, the coefficients must solve the following system of equation (in matrix form):
1 1 1 1
432 −288 720 −1008
1 0 0 0
2 1 0 0



α
β
γ
δ

 =


0
0
1
0


This system is solvable by hand. However, for the next sections, the computations are not so

easy because the coefficients become quite big. For that reason, we do our computations on a
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computer algebra system. Here, we use PARI/GP which is specialized in number theory, but there
also exists other software like the famous Mathematica. All the codes are given in appendix B.
The solution of this equation is (α, β, γ, δ) = (1,−2, 0, 1). Hence, our +1 Fourier eigenfunction in
8 dimensions is

ϕ(t) =
E2

2(t)E
2
4(t)− 2E2(t)E4(t)E6(t) + E2

6(t)

∆
.

We also have that the transformation identity of ϕ is

ϕ(−1/t)t2 = t2ϕ(t)− 6it

π
ϕ1(t)−

36

π2
ϕ2(t),

with

ϕ1(t) :=
2E2(t)E4(t)

2 − 2E4(t)E6(t)

∆
, ϕ2(t) :=

E4(t)
2

∆
.

Using the computer algebra system, we can compute the first terms of the Fourier series of all
these forms quickly. This will be useful later.

ϕ(t) = 518400q + 31104000q2 +O(q3), (4.6)

ϕ1(t) = 1440 + 406080q + 18835200q2 +O(q3),

ϕ2(t) = q−1 + 504 + 73764q + 2695040q2 +O(q3).

4.2 The −1 Fourier eigenfunction

Now, we deal with the construction of the −1 Fourier eigenfunction. We are looking for a function
such that its Fourier transform is minus itself and which is a radial Schwartz function. For the
zeros, we only ask that it has a simple zero at

√
2 and a double zero at 0. We explain why below.

We set the eigenfunction in the form

b(x) = sin(π|x|2/2)2
∫ i∞

0

ψ(t)eiπ|x|
2tdt, (4.7)

where ψ ∈ M!
k(Γ(2)). We don’t need ψ to be a quasimodular form as in the last section. Instead,

it is a weakly holomorphic modular form of weight k on the group Γ(2). Having forms over Γ(2)
allows us to have modular forms ϕ such that ϕ(t + 1) = −ϕ(t). This minus sign is useful for the
Fourier transform. But since ψ is not a quasimodular form as ϕ in last section, we need to add a
had oc condition for the Fourier transform. Note that for Γ(2), the Fourier series of the modular
forms are in q1/2 = eiπt.

4.2.1 The zeros and the imaginary values

In the next section, we will take a linear combination of a(x) and b(x) and we don’t want the
resultant function to vanish at 0. Hence, it is not a problem (and actually better) if ψ vanishes
at 0. The non-vanishing of a(x) at 0 ensures that the final function does not vanish at this point.
However, it is useful to have a similar expansion for ϕ and ψ. We will use it to cancel the biggest
term in 4.2 when we combines a(x) and b(x).

In section 4.1.1, we used the quasimodularity of ϕ to cancel the zero at 0 with a pole of order
4. Looking at the computations of this section, we see that if

ψ(it) = ce2πt + d+O(e−πt)
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as t → ∞, with c, d ̸= 0, we have the right cancellation for the zeros at 0 and
√
2. With this

expansion, the integral in equation 4.7 converges for |x| >
√
2. Again, we can rewrite b(x) as

b(x) = i sin(π|x|2/2)2
(

c

π(|x|2 − 2)
+

d

π|x|2
+

∫ ∞

0

(
ψ(it)− (ce2πt + d)

)
e−π|x|2tdt

)
. (4.8)

Here, the integral converges for all x and b(r) is analytic as a function of r = |x|. As for the +1
Fourier eigenfunction, if all the Fourier coefficients of ψ are real, then b(x) takes purely imaginary
values.

4.2.2 The Fourier transform and the Schwartz function

In the same way as in section 4.1.2, we expand the squared sine and deform the integration paths
to make them pass all through i. This gives the form:

b(x) = 2

∫ i∞

0

ψ(t)eiπ|x|
2tdt−

∫ i∞+1

1

ψ(t− 1)eiπ|x|
2tdt−

∫ i∞−1

−1

ψ(t+ 1)eiπ|x|
2tdt

= 2

∫ i

0

ψ(t)eiπ|x|
2tdt−

∫ i

1

ψ(t− 1)eiπ|x|
2tdt−

∫ i

−1

ψ(t+ 1)eiπ|x|
2tdt

+

∫ i∞

i

(2ψ(t)− ψ(t− 1)− ψ(t+ 1))eiπ|x|
2tdt

Note that Γ(2) contains the translation t 7→ t− 2. Hence, we have ψ(t− 1) = ψ((t+ 1)− 2) =
ψ(t+ 1). So the last integral is ∫ i∞

i

2(ψ(t)− ψ(t+ 1))eiπ|x|
2tdt.

We denote ψ̃(t) = 2ψ(t)− 2ψ(t+ 1). The Fourier transform of b(x) is

b̂(x) = 2

∫ i

0

ψ(t)t−n/2e−iπ|x|2/tdt−
∫ i

1

ψ(t+ 1)t−n/2e−iπ|x|2/tdt−
∫ i

−1

ψ(t+ 1)t−n/2e−iπ|x|2/tdt

+

∫ i∞

i

ψ̃(t)t−n/2e−iπ|x|2/tdt.

Making the change of variable t 7→ −1/t, we get

b̂(x) = −2

∫ i∞

i

ψ(−1/t)t−keiπ|x|
2

dt−
∫ i

−1

ψ(−1/t+ 1)t−keiπ|x|
2tdt−

∫ i

1

ψ(−1/t+ 1)t−keiπ|x|
2/tdt

−
∫ i

0

ψ̃(−1/t)t−keiπ|x|
2tdt.

Identifying the integral of b and b̂ with respect to their bounds, we find the following conditions
on ψ: let T : t 7→ t + 1 and S : t 7→ −1/t two transformations of SL(2,Z)\Γ(2). Then b̂ = −b if
ψ[T ]k[S]k = −ψ[T ]k and ψ̃ = 2ψ[S]k. The condition on ψ̃ can be rewritten as

ψ(−1/t) + ψ(t+ 1) = ψ(t).
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or equivalently as ψ[S]k + ψ[T ]k = ψ. Applying [S]k to this equation also gives that ψ[T ]k[S]k =
−ψ[T ]k.

This gives another form for b(x):

b(x) = 2

∫ i

0

ψ(t)eiπ|x|
2tdt−

∫ i

1

ψ(t− 1)eiπ|x|
2tdt−

∫ i

−1

ψ(t+ 1)eiπ|x|
2tdt (4.9)

+ 2

∫ i∞

i

ψ(−1/t)eiπ|x|
2tdt

The same computations as before give that ψ is a Schwartz function. The crucial point was
that the Fourier series of ϕ begins at a strictly positive index. Here, we did not invert ψ is the
definition of b(x). Hence, our condition is that the Fourier series of ψ is of the form

ψ(−1/t)t−k =
∞∑

m=1

fm/2e
iπmt.

In this case, the integrals in equation 4.9 converge for all x. b(x) is also an analytic function
as a function of r = |x|. Hence, forms 4.8 and 4.9 are equal everywhere by analytic continuation.

Putting everything together, we get:

Theorem 4.4. Let n a multiple of 8, k = 2 − n/2 and ψ a weakly holomorphic modular form of
weight k on Γ(2). If ψ satisfies:

1. ψ grows like ψ(it) = ce2πt + d+O(e−πt) as t→ ∞, with c, d ̸= 0.

2. ψ has real Fourier coefficients.

3. ψ(−1/t) + ψ(t+ 1) = ψ(t)

4. ψ(−1/t)t−k =
∑∞

m=1 fm/2e
iπmt

Then b(x) is a −1 Fourier eigenfunction taking values in iR and a radial Schwartz function with
a simple zero at |x| =

√
2 and double zeros at 0 and |x| =

√
2k for all k ≥ 2.

4.2.3 Computation of the function

Now, we search for a function satisfying all the conditions of theorem 4.4. As in last section,
we multiply ψ by ∆ to get a holomorphic modular form of weight 10, denoted Ψ := ∆ψ. From
corollary 3.17, we know that a basis of M10(Γ(2)) is given by modular forms of the shape θ20−4j

01 θ4j10,
j = 0, . . . 5. The conditions on Ψ are the following:

Proposition 4.5. Let Ψ is a modular form of weight 10 and group Γ(2) such that:

1. Ψ grows like Ψ(it) = c+ de−2πt +O(e−3πt) as t→ ∞, with c, d ̸= 0.

2. Ψ has real Fourier coefficients.

3. Ψ(−1/t) + Ψ(t+ 1) = Ψ(t)

4. Ψ(−1/t)t−10 =
∑∞

m=3 fm/2e
iπmt

Then ψ = Ψ/∆ satisfies the conditions of theorem 4.4 for n = 8.
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The space M10(Γ(2)) has 6 dimensions. As for the +1 Fourier eigenfunction, we create a
system of linear equations to find Ψ. Once more, Ψ has real Fourier coefficients because all the
equations are real, as well as the Fourier coefficients of θ01 and θ10. The first three equations are
given by canceling the Fourier coefficients of Ψ(i/t). Another equation is determined by c ̸= 0 in
the first condition. As before, we are searching for a function only up to a constant. Hence, we set
the normalization c = 1. The last equations are given by equating the first Fourier coefficients of
Ψ(−1/t)+Ψ(t+1) and Ψ(t). Some of these equations are actually redundant, so we add equations
up to the fourth coefficient.

We get a linear system of 8 equations and of rank 6. This system is a bit trickier to solve using
PARI, because there is no implementation of θ01 and θ10 in it. The interested reader can refer to
the appendix B for more information. Anyway, the solution of the system gives

ψ =
5θ1201θ

8
01 + 5θ1601θ

4
01 + 2θ2001

2∆
.

The last condition we did not check before is that d ̸= 0. This is visible in the expansion below.

ψ(t) = q−1 + 144− 5120q1/2 + 70524q − 626688q3/2 + 4265600q2 +O(q5/2), (4.10)

ψ(−1/t)t2 = −10240q1/2 − 1253376q3/2 +O(q5/2).

4.3 Proof of theorem 1.2

Finally, we can prove theorem 1.2. We recall it here:

Theorem 1.2 (Viazovska). The density of a sphere packing in 8 dimensions is at most π4

384
and

the unique periodic packing achieving it is the E8 lattice packing.

This theorem follows from the following proposition using the method of Cohn and Elkies:

Proposition 4.6. There exists a function f8 : R8 → R such that:

1. f8(0) = f̂8(0) = 1.

2. f8(x) ≥ 0 for all x ∈ R8 such that |x| ≥
√
2.

3. f̂8(x) ≤ 0 for all x ∈ R8.

4. f8 is radial and a Schwartz function.

5. f8 has zeros at all non-zero vector lengths of Λ8. These zeros are double zeros for all length
except at

√
2, where it is a simple one.

Therefore, using this function in theorem 2.8 and theorem 2.9 implies that theorem 1.2 holds.

We create f8 as a linear combination of the function a(x) and b(x) constructed in the last
sections. This immediately proves all the conditions on f8 except the inequalities of conditions 2.
and 3. The proof of these inequalities is not difficult but quite long, so we only sketch it. All the
details are in Viazovska’s paper [2].
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Proof (Sketch). we create a function f8 as a linear combination of a(x) and b(x):

f8(x) = iAa(x) + iBb(x),

with constants A,B ∈ R. Since our functions are taking values in iR, we added a factor i. It is
easy to determine A. b(x) vanishes at 0 and b̂(x) = −b(x), so the values of f8(0) and f̂8(0) depend
only on a(x). Since a(x) is a +1 eigenfunction, we automatically have that f8(0) = f̂8(0). We
normalize f8 with A = 1

ia(0)
= −4 · π

6
· 1
1440

= − π
2160

. This value comes from equation 4.3 combined
with the expansion 4.6.

We need to find the right value of B such that the two inequalities of theorem 2.8 holds. These
inequalities are:

iAa(x) + iBb(x) ≤ 0 ∀x ∈ R8 s.t. |x| >
√
2,

iAa(x)− iBb(x) ≥ 0 ∀x ∈ R8.

By definitions of a(x) and b(x), these inequalities are equivalent to:

Aϕ(i/t)t2 −Bψ(it) ≤ 0 ∀t ≥ 0, (4.11)

Aϕ(i/t)t2 +Bψ(it) ≥ 0 ∀t ≥ 0.

Note that this equivalence is valid only for |x| >
√
2, because the integrals in equations 4.1 and

4.7 does not converge for |x| ≤
√
2. This is not a problem for the first inequality. For the second

one, we will see that we can extend the convergence of iAa(x) − iBb(x) to all x ̸= 0 by choosing
the right value for B.

Looking at inequalities 4.11, we see that we need Bψ(x) ≥ 0. By definition, θ01 and θ10 have
real Fourier coefficients. Therefore, θ401 and θ410 take positive values on iR≥0. From its definition
as a product, the modular discriminant ∆ is also always positive on iR≥0. In view of this, we have

ψ(it) ≥ 0 ∀t ≥ 0.

Hence, B must be positive. Moreover, if these inequalities hold for some value of B, then it
also holds for B multiplied by any number bigger than 1. When t → ∞, ϕ(i/t)t2 = 36

π2 e
2πt + O(t)

and ψ(it) = e2iπt +O(1). Therefore, to have the second inequality, we need at least to cancel this
term. This implies that B ≥ π

2160
36
π2 = 1

60π
. We fix B = 1

60π
.

For this value of B, the term in e2πt is canceled in Aϕ(i/t)t2 + Bψ(it). Hence, the smallest
terms in this equation are the constant term and the term in t. Looking back at section 4.1.1 and
in particular equations 4.3 and 4.8, we see that the integral∫ ∞

0

(ϕ(i/t)t−2 + ψ(it))e−π|x|2tdt

converges for all x ̸= 0. In particular the equivalence between the third inequality of the proposition
and the second inequality of 4.11 is proven.
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Looking at equations 4.6 and 4.10, we get the following expansion of ϕ and ψ around ∞ and 0:

As t→ ∞ :

ϕ(i/t)t2 =
36

π2
(e2πt + 504 + 73764e−2πt + 2695040e−4πt)− 6t

π
(1440 + 406080e−2πt + 18835200e−4πt)

+ t2(518400e−2πt + 31104000e−4πt) +O(t2e−5πt),

ψ(it) = e2πt + 144− 5120e−πt + 70524e2πt − 626688e−3πt + 4265600e−4πt +O(e−5πt).

As t→ 0 :

ϕ(i/t)t2 = t2(518400e−2π/t + 3110400e−4π/t) +O(t2e−5π/t),

ψ(it) = t2(10240e−π/t + 1253376e−3π/t) +O(t2e−6π/t).

With the values A = − π
2160

and B = 1
60π

, we have the following behavior at 0 and ∞:

As t→ ∞ :

Aϕ(i/t)t2 −Bψ(it) = − 1

30π
e2πt +O(t),

Aϕ(i/t)t2 +Bψ(it) = 4t+O(1).

As t→ 0 :

Aϕ(i/t)t2 −Bψ(it) = −512

3π
t2e−π/t +O(t2e−π/t),

Aϕ(i/t)t2 +Bψ(it) =
512

3π
t2e−π/t +O(t2e−π/t).

Hence, around 0 and ∞, the inequalities 4.11 are valid. The last part of the proof consists in
checking these inequalities everywhere. We only sketch this part.

To prove the inequalities, we split the interval (0,∞) into (0, 1] and [1,∞). For t ∈ [1,∞),
we consider the functions δ(t) := Aϕ(i/t)t2 − Bψ(it) and δ̃(t) = Aϕ(i/t)t2 + Bψ(it). In the
same way as above, we combine the Fourier series of ϕ and ψ to get the series of δ and δ̃. We
denote δn(t) the truncated expansion of δ up to an error of size O(t2e−πnt). We denote the error
Rn(t) = |δ(t)−δn(t)|. Using the explicit formula for the Fourier coefficients of the Eisenstein series
and the Thetanullwerte, or some effective version of theorem 3.5, we get effective constants for
the bound on the Fourier coefficients of ϕ and ψ. The discussion at the beginning of appendix A
in [3] gives details on the first idea. The bounds given by the second method are in [2]. Using
these bounds, we get a bound on the size of the error. Finally, for some n big enough (in her
paper, Viazovska took n = 6), we check two things using interval arithmetic. First, that the
approximation satisfies the inequalities 4.11. Second, that the error term is always smaller than
the approximation term, i.e. Rn(t) ≤ |δ(t)| for all t ∈ [1,∞). This implies that the inequality for
δ holds between 1 and ∞. This method gives the same result for δ̂.

For t ∈ (0, 1], we consider the expansions of ϕ and ψ as t→ 0 and do the same reasoning. The
approximation up to n = 6 also works.

5 The sphere packing problem in dimension 24

This chapter follows the same ideas as the last one. However, most of the work is already done.
We only need to make small adjustments to adapt our proof to this situation. One of them is that
the Leech lattice that we consider in 24 dimensions has no vector of length

√
2. Another is that
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k = −10, so we need to multiply our forms by ∆2 to get a holomorphic form. Also, in the last
section, a new problem arises in this dimension. It is about the convergence of the integrals.

5.1 The +1 Fourier eigenfunction

We take again a function a(x) of the form

a(x) = sin(π|x|2/2)2
∫ i∞

0

ϕ

(
−1

t

)
t−keiπ|x|

2tdt, (5.1)

where ϕ is a weakly holomorphic quasimodular form of weight k + 2 = −8 on SL(2,Z). We want
that a(x) satisfies the following conditions:

1. It has double zeros at all vector length
√
2k for k ≥ 3, a simple zero at |x| = 2 and does not

vanish at 0.

2. It is imaginary valued.

3. Its 24-dimensional Fourier transform is itself.

4. It is a radial Schwartz function.

The only difference with last chapter is the location of the zeros. Looking at section 4.1.1, we
see that it is enough that ϕ has an expansion of the form

ϕ(i/t)t−10 = ce4πt + (dt+ f)e2πt + (gt+ h) +O(t2e−2πt),

with c, d, g ̸= 0. The term in c gives a simple pole that cancels once the double zero at |x| = 2 and
the terms in d and g give poles of order 2 respectively 4 that cancel the zeros at |x| = 0 and

√
2.

Hence, the integral in 5.1 converges only for |x| > 2 and we can rewrite a(x) as

a(x) = −i sin(π|x|2/2)2
(

c

π(|x|2 − 4)
+

d

π2(|x|2 − 2)2
+

f

π(|x|2 − 2)
+

g

π2|x|4
+

h

π|x|2
(5.2)

+

∫ ∞

0

(
ϕ

(
i

t

)
t−k − (ce4πt + (dt+ f)e2πt + gt+ h)

)
e−π|x|2tdt

)
.

The integral above converges for all x. It also says that a(x) has purely imaginary values if
the Fourier series of ϕ has real coefficients. The computations of section 4.1.2 about the Fourier
transform of a(x) are still valid, but only for |x| > 2 instead of |x| >

√
2. It says that a(x) is a

+1 Fourier eigenfunction because ϕ is a quasimodular form of depth two. Finally, the reasoning of
section 4.1.3 that prove that a(x) is a Schwartz function is also valid. It also gives the condition
that the Fourier series of ϕ begin at m = 1. We also have that the two forms of a(x) are equal
everywhere because they are analytic continuations of equation 5.1. Hence, we can go directly to
the explicit computation of the function a(x).

Since k = −10, the function Φ := ∆2ϕ should be a quasimodular form of weight 16 and depth
2 on Γ(1). Rewriting theorem 4.2 and proposition 4.31 in 24 dimensions, we get the following
conditions on Φ:

Proposition 5.1. Let Φ a quasimodular form of depth 2 and weight 16 on Γ(1) such that:
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1. Φ grows like Φ(i/t)t−14 = c + (dt + f)e−2πt + (gt + h)e−4πt + O(t2e−6πt) as t → ∞, with
c, d, g ̸= 0.

2. Φ has real Fourier coefficients.

3. The Fourier series of Φ is Φ(t) =
∑∞

m=3 fmq
m.

Then for ϕ := Φ/∆2, a(x) is a +1 Fourier eigenfunction taking values in iR and a radial Schwartz
function with a simple zero at |x| = 2 and double zeros at |x| =

√
2k for all k ≥ 3.

Theorem 3.10 tells us that the space of quasimodular forms of weight 16 and depth 2 over Γ(1)
is of dimension 5. It is spanned by E2

2E
3
4 , E

2
2E

2
6 , E2E

2
4E6, E

4
4 and E4E

2
6 . The Fourier series of Φ

gives 3 linear equations. We add the normalization c = 24. This is the right value to get an integer
solution. A fifth equation is that there is no term in t in the equation for Φ(i/t)t−14. The same
calculation as equation 4.5 gives the equation 2αE2E

3
4 + 2βE2E

2
6 + γE2

4E6 = 0 for this condition,
where α, β, γ are the coefficient of E2

2E
3
4 , E

2
2E

2
6 and E2E

2
4E6. This gives the solution

ϕ =
49E2

2E
3
4 − 25E2

2E
2
6 − 48E2E

2
4E6 − 25E4

4 + 49E4E
2
6

∆2
.

Using the expansions given below, one can check that Φ follows the expansion of the first
condition. The transformation formula 3.2 of E2 implies that

ϕ(−1/t)t10 = t2ϕ(t)− 6it

π
ϕ1(t)−

36

π2
ϕ2(t),

with

ϕ1 =
98E2E

3
4 − 50E2E

2
6 − 48E2

4E6

∆2
, ϕ2 =

49E3
4 − 25E2

6

∆2
.

These functions have the following expansion:

ϕ = 3657830400q + 314573414400q2 +O(q3), (5.3)

ϕ1 = 120960q−1 + 18869760− 3281886720q + 214680775680q2 +O(q3),

ϕ2 = 24q−2 + 61632q−1 + 6198336 + 649114368q + 34850569824q2 +O(q3).

5.2 The −1 Fourier eigenfunction

As in 8 dimensions, we set

b(x) = sin(π|x|2/2)2
∫ i∞

0

ψ(t)eiπ|x|
2tdt, (5.4)

with ψ a weakly holomorphic modular form of weight k = −10 on Γ(2). As above, the only
modification we have to do is on the grow of ψ. If

ψ(it) = ce4πt + de2πt + f +O(e−πt),

with c, d, f ̸= 0, then ψ has a simple zero at |x| = 0,
√
2 and 2 and double zeros for |x| =

√
2k,

k ≥ 3. The other reasoning of section 4.2 are still valid. Therefore, we can reformulate theorem
4.4 and proposition 4.5 in dimension 24 in the following way:
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Proposition 5.2. Let Ψ a modular form of weight 14 on Γ(2) such that:

1. Ψ grows like Ψ(it) = c+ de−2πt + fe−4πt +O(e−5πt) as t→ ∞, with c, d, f ̸= 0.

2. Ψ has real Fourier coefficients.

3. Ψ(−1/t)t−14 +Ψ(t+ 1) = Ψ(t)

4. Ψ(−1/t)t−14 =
∑∞

m=5 fm/2e
iπmt.

Then for ψ := Ψ/∆2, b(x) is a −1 Fourier eigenfunction taking values in iR and a radial Schwartz
function with a simple zero at |x| = 2 and double zeros at |x| =

√
2k for all k ≥ 3.

The space of modular forms of weight 14 on Γ(2) is of dimension 8 and its structure is given by
theorem 3.17. Five equations comes from the Fourier series of Ψ(−1/t). A condition is given by the
normalization c = 2. Two other equations comes from the condition Ψ(−1/t) + Ψ(t + 1) = Ψ(t).
This gives the solution

ψ =
7θ2001θ

8
10 + 7θ2401θ

4
10 + 2θ2801

∆2
.

Finally, the conditions d, f ̸= 0 are visible in the expansion below:

ψ(t) = 2q−2 − 464q−1 + 172128− 3670016q1/2 + 47238464q − 459276288q3/2 +O(q2),
(5.5)

ψ(−1/t)t10 = −7340032q1/2 − 918552576q3/2 +O(q5/2).

5.3 Proof of theorem 1.3

We now turn to the proof of theorem 1.3. We recall it here:

Theorem 1.3 (Cohn, Kumar, Miller, Radchenko, Viazovska). The density of a sphere packing
in 24 dimensions is at most π12

12!
and the unique periodic packing achieving it is the Leech lattice

packing.

In the same way as in the last chapter, this theorem follows by applying the method of Cohn
and Elkies using the following proposition:

Proposition 5.3. There exists a function f24 : R24 → R such that:

1. f24(0) = f̂24(0) = 1.

2. f24(x) ≥ 0 for all x ∈ R24 such that |x| ≥ 2.

3. f̂24(x) ≤ 0 for all x ∈ R24.

4. f24 is radial and a Schwartz function.

5. f24 has zeros at all non-zero vector lengths of the Leech lattice. These zeros are double zeros
for all length except at 2, where it is a simple one.

Therefore, using this function in theorem 2.8 and theorem 2.9 implies that theorem 1.3 holds.

The proof follows the same strategy as the proof of proposition 4.6 at the end of last chapter.
There is just one more difficulty at the end.
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Proof (sketch). We construct f24 as a linear combination of a(x) and b(x):

f24 = iAa(x) + iBb(x).

We set A = 1
ia(0)

= −4π
6

1
18869760

= − π
28304640

and B = −A 36
π2

24
2

= 1
65520π

. Looking at the

expansions 5.3 and 5.5, we see that this value of B cancels exactly the q−2 term in Aϕ(−1/t)t10 −
Bψ(t).

We want to prove the two inequalities:

iAa(x) + iBb(x) ≤ 0 ∀x ∈ R24 s.t. |x| > 2,

iAa(x)− iBb(x) ≥ 0 ∀x ∈ R24.

As in the proof of proposition 4.6, we reduce ourselves to the following inequalities:

Aϕ(i/t)t10 −Bψ(it) ≤ 0 ∀t ≥ 0, (5.6)

Aϕ(i/t)t10 +Bψ(it) ≥ 0 ∀t ≥ 0.

Unfortunately, in this case the inequalities 5.6 are not equivalent to the inequalities of the
proposition. This is because Aϕ(i/t)t10 + Bψ(it) has a non-zero term in q−1. Hence, the integral
in iAa(x) − iBb(x) converges only for |x| >

√
2. We come back to this issue at the end of the

proof. Looking at the expansion 5.3 and 5.5, we see that:

As t→ ∞ :

Aϕ(i/t)t10 −Bψ(it) = − 1

16380π
e4πt +O(te2πt),

Aϕ(i/t)t10 +Bψ(it) =
1

39
te2πt − 10

117
e2πt +O(t).

As t→ 0 :

Aϕ(i/t)t10 −Bψ(it) = −65536

585π
t10e−π/t +O(t10e−2π/t),

Aϕ(i/t)t10 +Bψ(it) =
65536

585π
t10e−π/t +O(t10e−2π/t).

Hence, the inequalities 5.6 are valid around 0 and ∞. One needs to check the inequalities
everywhere. We separate again the case t ∈ (0, 1] and t ∈ [1,∞). For t in the second interval, we
define δ = Aϕ(i/t)t2 − Bψ(it) and δn(t) which is the truncated series of δ up to an error of size
O(t2e−πnt). We use a different method from the one of proposition 4.6. It is based on Sturm’s
theorem (theorem 2.50 in [17]) that gives the number of zeros of a polynomial in an interval. We
approximate the error term Rn(t) = |δ(t)−δn(t)| with n = 50. This gives a bound Rn(t) ≤ 10−50|q|6
in all cases. We apply Sturm’s theorem to δn, seen as a polynomial in q1/2, plus or minus 10−50q6.
This gives that δ cannot change sign on the interval. Since the value of δ at ∞ is consistent with
the inequalities 5.6, the inequality for δ hold for t ∈ [1,∞). We do the same computation for δ̂
and for t ∈ (0, 1]. The approximation up to n = 50 always works and gives a error term smaller
than 10−50|q|6.

Applying Sturm’s theorem to a polynomial of degree 49 is not feasible by hand. In [3], they used
a computer algebra system for the calculations. In particular, they approximated every number
appearing in the computation by rational ones. It allows them to do exact calculations. For
example, π is approximated from above and below by rounding its 10th decimal. All the details
of their proof is given in [3] and the attached PARI/GP program.
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We have to deal with one last thing. Proving inequalities 5.6 does not provide a proof that
iAa(x) − iBb(x) ≥ 0 for |x| ≤

√
2. To do this, we split the integral in a(x) and b(x) into to

pieces, one with t ∈ (0, 1] and the other with t ∈ [1,∞). The only problem is the term in te2πt at
∞. Hence, the computations above tell us that the integral on (0, 1] converges and satisfies the
inequalities. For the second one, we have the following expansion:

Aϕ(i/t)t10 +Bψ(it) =
1

39
te2πt − 10

117
e2πt +O(t),

as t → ∞. The remaining term O(t) does not cause troubles. In section 4.1.1, we extended the
convergence of the integral by computing the integral for |x| big enough. Here, we do the same
with the problematic terms:∫ ∞

1

(
1

39
te2πt − 10

117
e2πt
)
e−π|x|2tdt =

(10− 3π)(2− |x|2) + 3

117π2(2− |x|2)2
e−π(|x|2−2) =: S(x).

Then we prove that the function

S(x) +

∫ ∞

1

(
(Aϕ(i/t)t10 +Bψ(it))− 1

39
te2πt +

10

117π
e2πt
)
e−π|x|2tdt

is negative for 0 < |x| <
√
2 in the same way as before. This is the case for S(x). For the integral,

it is equivalent to prove that

Aϕ(i/t)t10 +Bψ(it) ≥ 1

39
te2πt − 10

117π
e2πt.

This is done in the same way as before by approximating the Fourier series up to q50 and using
Sturm’s theorem.

A Matrices of the lattices

We give here a basis for the E8 and the Leech lattices as the rows of a matrix. Any other basis of
the corresponding lattice can be deduced by multiplication on the right by an element of GLn(Z)
for n = 8, respectively n = 24. Basis for Λ8 and Λ24 are given by the matrix M8, respectively M24.

M8 =



2 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2


, M24 =

1√
8



8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0
2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0
2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0
2 0 2 0 2 0 0 2 2 2 0 0 0 0 0 0 2 2 0 0 0 0 0 0
2 0 0 2 2 2 0 0 2 0 2 0 0 0 0 0 2 0 2 0 0 0 0 0
2 2 0 0 2 0 2 0 2 0 0 2 0 0 0 0 2 0 0 2 0 0 0 0
0 2 2 2 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0
0 0 0 0 0 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
−3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


.

One easily computes (using a computer) that these matrices both have a determinant equal to
one, and that the products between them and their transpose produce integral matrices.
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B Computer codes

PARI/GP is a computer algebra system written in C and available for free under public license at
the address pari.math.u-bordeaux.fr. It is specialized in number theory. One notable difference
with usual programming language is that arrays are considered as matrices and so their index begins
at 1 and not 0. Since all programs follow the same idea, only the first one is commented in detail.

B.1 +1 Fourier eigenfunction in 8 dimensions

For the positive Fourier eigenfunction, we use the PARI implementation of modular forms.

Dimension8Positive.gp

\\This program find the +1 Fourier eigenfunction in 8 dimensions.

\\Initialize a space of modular forms, required for computations
ModularSpace=mf in i t ( [ 1 , 0 ] ) ;

\\The size of the Fourier expansions we consider
n=100;
\\The size of the Fourier expansions we display
nDisplay=5;

\\We begin by setting a basis of the quasimodular forms of weight 12 and depth 2.
We take a Fourier expansion of n terms of this basis

\\These variables define the Eisenstein series of weight 2,4 and 6 and the modular
discriminant

Ei s en s t e i n2=mfEk(2) ;
E i s en s t e i n4=mfEk(4) ;
E i s en s t e i n6=mfEk(6) ;
Discr iminant=mfDelta ( ) ;

\\The basis of quasimodular forms of weight 12 and depth 2
Bas i s =[{

mfmul (mfpow( Ei s ens te in2 , 2 ) ,mfpow( Ei s ens te in4 , 2 ) ) ,
mfmul (mfmul ( E i s ens t e in2 , E i s en s t e i n4 ) , E i s en s t e i n6 ) ,
mfpow( Ei s ens t e in4 , 3 ) ,
mfpow( Ei s ens t e in6 , 2 )

} ] ;

\\Fourier series of the basis. SeriesBasis[i][j] is the j-th Fourier factor of the
i-th function of the basis

S e r i e sBa s i s=vecto r (4 ) ;
f o r ( i =1 ,4 ,{

S e r i e sBa s i s [ i ]=mfcoe f s ( Bas i s [ i ] , n ) ;
}) ;

\\We set our equation system using the factors of the Fourier expansion of the
basis. We denote fj for the j-th Fourier factor of Delta*phi(t).

\\f0=0
Condit ion1=[ S e r i e sBa s i s [ 1 ] [ 1 ] , S e r i e sBa s i s [ 2 ] [ 1 ] , S e r i e sBa s i s [ 3 ] [ 1 ] , S e r i e sBa s i s

[ 4 ] [ 1 ] ] ;
\\f1=0
Condit ion2=[ S e r i e sBa s i s [ 1 ] [ 2 ] , S e r i e sBa s i s [ 2 ] [ 2 ] , S e r i e sBa s i s [ 3 ] [ 2 ] , S e r i e sBa s i s

[ 4 ] [ 2 ] ] ;
\\Normalization c=1
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Condit ion4 = [ 1 , 0 , 0 , 0 ] ;
\\Condition for the t factor
Condit ion3 = [ 2 , 1 , 0 , 0 ] ;

\\The matrix of the equation system
M=matconcat ( [ Condit ion1 ; Condit ion2 ; Condit ion3 ; Condit ion4 ] ) ;

\\The vector of constant terms. The last one correspond to the normalization
condition

A=[0 , 0 , 0 , 1 ] ˜ ;

\\Solve M*X=A for X=(alpha,beta,gamma,delta)
X=matsolve (M,A) ;

\\Display the solution in the console
p r i n t f (”\nThe s o l u t i o n o f the system i s : ” ) ;
p r i n t f ( concat (”X=(alpha , beta , gamma, de l t a )=”,X) ) ;

\\Now, we compute the modular forms Delta*phi and phi
DeltaPhi=mf l i n ea r ( [ Bas i s [ 1 ] , Bas i s [ 2 ] , Bas i s [ 3 ] , Bas i s [ 4 ] ] ,X) ;
Phi=mfdiv ( DeltaPhi , Discr iminant ) ;

\\We do the same for phi1 and phi2. The command mfshift(F,s) divide the modular
form F by q^s

Phi1=mfdiv ( mf l i n ea r ( [ Bas i s [ 1 ] , Bas i s [ 2 ] ] , [ 2 *X[ 1 ] ,X [ 2 ] ] ) ,mfmul ( E i s ens t e in2 ,
Discr iminant ) ) ;

Phi2=mfdiv ( m f sh i f t ( mf l i n ea r ( [ Bas i s [ 1 ] ] , [X [ 1 ] ] ) ,=1) ,mfmul (mfpow( Ei s ens t e in2 , 2 ) ,
Discr iminant ) ) ;

\\We compute the Fourier series of these forms and display them
Se r i e sPh i=mfcoe f s ( Phi , nDisplay ) ;
Se r i e sPh i1=mfcoe f s ( Phi1 , nDisplay ) ;
Se r i e sPh i2=mfcoe f s ( Phi2 , nDisplay ) ;

p r i n t f (”\nThe Four i e r s e r i e s o f phi , phi1 and phi2 are : ” ) ;
p r i n t f ( concat (”\ nphi ( t )=”, Ser ( Ser i e sPh i , q ) ) ) ;
p r i n t f ( concat (”\ nphi1 ( t )=”, Ser ( Ser i e sPhi1 , q ) ) ) ;
p r i n t f ( concat ( [ ”\ nphi2 ( t )=1/q [ ” , Ser ( Ser i e sPhi2 , q ) , ” ] ” ] ) ) ;

B.2 −1 Fourier eigenfunction in 8 dimensions

For the negative Fourier eigenfunction, we do not have a implementation of the theta functions θ01
and θ10 in PARI. Instead, we directly compute their Fourier series up to a big enough term. For
the last condition

ψ(−1/t) + ψ(t+ 1) = ψ(t),

the equation system only checks it for the first Fourier coefficients. Using the transformation
formulas for the Thetanullwerte, one can easily compute by hand that this equation is valid. Since
we are working in a space of finite dimension, it is also possible to prove it by computing enough
Fourier terms. The program does this and gives the error on its computations.
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Dimension8Negative.gp

\\This program find the -1 Fourier eigenfunction in 8 dimensions.

n=100;
nDisplay=5;

\\We begin by defining the thetanullwerte functions. Since they are not implemented
in PARI/GP, we approximate them up to the n-th Fourier term by a polynomial in

r=q^1/2
\\These variables define the Eisenstein series, the modular discriminant and the 4

th power of thetanullwerte functions. bernfrac(n) is the n-th Bernoulli number
q = r ˆ2 ;
E i s en s t e i n (k ) = 1=2*k/ be rn f r a c (k ) *sum(m=1,n , sigma (m, k=1)*qˆm)+O(qˆn) ;
Discr iminant = ( E i s en s t e i n (4 )ˆ3=E i s en s t e i n (6 ) ˆ2) /1728 ;
Theta004=(sum(m==n , n , r ˆ(mˆ2) ) + O( r ˆ(2*n) ) ) ˆ4 ;
Theta014=(sum(m==n , n ,(=1) ˆm* r ˆ(mˆ2) ) + O( r ˆ(2*n) ) ) ˆ4 ;
Theta104=r *(sum(m==n , n , r ˆ(mˆ2+m) )+O( r ˆ(2*n) ) ) ˆ4 ;

\\Basis of modular form of weight 10 on Gamma(2). T and S designate the usual
transformations t->t+1 and t->-1/t

Bas i s=vecto r (6 ) ;
BasisT=vecto r (6 ) ;
Bas isS=vecto r (6 ) ;
f o r ( i =1 ,6 ,{

Bas i s [ i ]=Theta014 ˆ( i =1)*Theta104ˆ(6= i ) ;
BasisT [ i ]=Theta004 ˆ( i =1)*(=Theta104 ) ˆ(6= i ) ;
Bas isS [ i ]=(=Theta104 ) ˆ( i =1)*(=Theta014 ) ˆ(6= i ) ;

}) ;

\\Equation system. We denote fSj for the j-th Fourier factor of Delta*psi(-1/t).
Condit ion=vecto r (8 ) ;
f o r ( i =1 ,8 ,{

Condit ion [ i ]= vec to r (6 ) ;
}) ;
f o r ( j =1 ,6 ,{
\\fS0=0
Condit ion [ 1 ] [ j ]= po l c o e f ( BasisS [ j ] , 0 ) ;
\\fS0.5=0
Condit ion [ 2 ] [ j ]= po l c o e f ( BasisS [ j ] , 1 ) ;
\\fS1=0
Condit ion [ 3 ] [ j ]= po l c o e f ( BasisS [ j ] , 2 ) ;
\\c=1
Condit ion [ 4 ] [ j ]= po l c o e f ( Bas i s [ j ] , 0 ) ;

}) ;

\\Condition psi(-1/t)+psi(t+1)=psi(t) for the four first coefficients
f o r ( i =5 ,8 ,{

f o r ( j =1 ,6 ,
Condit ion [ i ] [ j ]= po l c o e f ( BasisS [ j ] , i )+po l c o e f ( BasisT [ j ] , i )=po l c o e f ( Bas i s [ j ] , i ) ;

) ;
}) ;

M=matconcat ( [ Condit ion [ 1 ] ; Condit ion [ 2 ] ; Condit ion [ 3 ] ; Condit ion [ 4 ] ; Condit ion [ 5 ] ;
Condit ion [ 6 ] ; Condit ion [ 7 ] ; Condit ion [ 8 ] ] ) ;

A= [0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ] ˜ ;
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X=matsolve (M,A) ;

p r i n t f (”\nThe s o l u t i o n o f the system i s : ” ) ;
p r i n t f ( concat (”X=”,X) ) ;

\\Computation of the series of the modular forms
DeltaPs i=sum( i =1 ,6 ,X[ i ]* Bas i s [ i ] ) ;
DeltaPsiS=sum( i =1 ,6 ,X[ i ]* BasisS [ i ] ) ;
DeltaPsiT=sum( i =1 ,6 ,X[ i ]* BasisT [ i ] ) ;

Ps i=DeltaPs i /Discr iminant ;
PsiS=DeltaPsiS /Discr iminant ;
PsiT=DeltaPsiT/Discr iminant ;

p r i n t f (”\nThe Four i e r s e r i e s o f p s i ( t ) and p s i (=1/ t ) are ( r=qˆ1/2) : ” ) ;
p r i n t f ( concat (”\ nps i ( t )=”,Psi+O(qˆnDisplay ) ) ) ;
p r i n t f ( concat (”\ nps i (=1/ t )=”,PsiS+O(qˆnDisplay ) ) ) ;

p r i n t f (”\nThe e r r o r on the equat ion p s i (=1/ t )+ps i ( t+1)=ps i ( t ) i s at most : ” ) ;
p r i n t f ( concat (” p s i (=1/ t )+ps i ( t+1)=p s i ( t )=”,PsiS+PsiT=Psi ) ) ;

B.3 +1 Fourier eigenfunction in 24 dimensions

Dimension24Positive.gp

\\This program find the +1 Fourier eigenfunction in 24 dimensions.

mf=mf in i t ( [ 1 , 0 ] ) ;
n=100;
nDisplay=5;

\\Eisenstein series and modular discriminant
Ei s en s t e i n2=mfEk(2) ;
E i s en s t e i n4=mfEk(4) ;
E i s en s t e i n6=mfEk(6) ;
Discr iminant=mfDelta ( ) ;

\\Basis of quasimodular forms of weight 16 and depth 2
Bas i s ={[

mfmul (mfpow( Ei s ens te in2 , 2 ) ,mfpow( Ei s ens te in4 , 3 ) ) ,
mfmul (mfpow( Ei s ens te in2 , 2 ) ,mfpow( Ei s ens te in6 , 2 ) ) ,
mfmul (mfmul ( E i s ens t e in2 ,mfpow( Ei s ens te in4 , 2 ) ) , E i s en s t e i n6 ) ,
mfpow( Ei s ens t e in4 , 4 ) ,
mfmul ( E i s ens t e in4 ,mfpow( Ei s ens t e in6 , 2 ) )

] } ;

\\Fourier series of the basis
S e r i e sBa s i s=vecto r (5 ) ;
f o r ( i =1 ,5 ,{

S e r i e sBa s i s [ i ]=mfcoe f s ( Bas i s [ i ] , n )
}) ;

\\Equation system
\\f0=0
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Condit ion1=[ S e r i e sBa s i s [ 1 ] [ 1 ] , S e r i e sBa s i s [ 2 ] [ 1 ] , S e r i e sBa s i s [ 3 ] [ 1 ] , S e r i e sBa s i s
[ 4 ] [ 1 ] , S e r i e sBa s i s [ 5 ] [ 1 ] ] ;

\\f1=0
Condit ion2=[ S e r i e sBa s i s [ 1 ] [ 2 ] , S e r i e sBa s i s [ 2 ] [ 2 ] , S e r i e sBa s i s [ 3 ] [ 2 ] , S e r i e sBa s i s

[ 4 ] [ 2 ] , S e r i e sBa s i s [ 5 ] [ 2 ] ] ;
\\f2=0
Condit ion3=[ S e r i e sBa s i s [ 1 ] [ 3 ] , S e r i e sBa s i s [ 2 ] [ 3 ] , S e r i e sBa s i s [ 3 ] [ 3 ] , S e r i e sBa s i s

[ 4 ] [ 3 ] , S e r i e sBa s i s [ 5 ] [ 3 ] ] ;
\\c=24, if factor E2^2 -> 1, otherwise 0
Condit ion4 = [1 , 1 , 0 , 0 , 0 ] ;
\\Cond for t, if E2^2 -> 2, if E2^1 -> 1
Condit ion5 = [2 , 2 , 1 , 0 , 0 ] ;

M=matconcat ( [ Condit ion1 ; Condit ion2 ; Condit ion3 ; Condit ion4 ; Condit ion5 ] ) ;

A=[0 , 0 , 0 , 24 , 0 ] ˜ ;
X=matsolve (M,A) ;

p r i n t f (”\nThe s o l u t i o n o f the system i s : ” ) ;
p r i n t f ( concat (”X=”,X) ) ;

\\Computation of the modular forms and their series
DeltaPhi=mf l i n ea r ( [ Bas i s [ 1 ] , Bas i s [ 2 ] , Bas i s [ 3 ] , Bas i s [ 4 ] , Bas i s [ 5 ] ] ,X) ;
Phi=mfdiv ( DeltaPhi ,mfpow( Discr iminant , 2 ) ) ;
Phi1=mfdiv ( m f sh i f t ( mf l i n ea r ( [ Bas i s [ 1 ] , Bas i s [ 2 ] , Bas i s [ 3 ] ] , [ 2 *X[ 1 ] , 2 *X[ 2 ] ,X [ 3 ] ] ) ,=1) ,

mfmul ( E i s ens t e in2 ,mfpow( Discr iminant , 2 ) ) ) ;
Phi2=mfdiv ( m f sh i f t ( mf l i n ea r ( [ Bas i s [ 1 ] , Bas i s [ 2 ] ] , [X[ 1 ] ,X [ 2 ] ] ) ,=2) ,mfmul (mfpow(

Ei s ens t e in2 , 2 ) ,mfpow( Discr iminant , 2 ) ) ) ;

S e r i e sPh i=mfcoe f s ( Phi , nDisplay ) ;
Se r i e sPh i1=mfcoe f s ( Phi1 , nDisplay ) ;
Se r i e sPh i2=mfcoe f s ( Phi2 , nDisplay ) ;

p r i n t f (”\nThe Four i e r s e r i e s o f phi , phi1 and phi2 are : ” ) ;
p r i n t f ( concat (”\ nphi ( t )=”, Ser ( Ser i e sPh i , q ) ) ) ;
p r i n t f ( concat ( [ ”\ nphi1 ( t )=1/q [ ” , Ser ( Ser i e sPhi1 , q ) , ” ] ” ] ) ) ;
p r i n t f ( concat ( [ ”\ nphi2 ( t )=1/q ˆ2 [ ” , Ser ( Ser i e sPhi2 , q ) , ” ] ” ] ) ) ;

B.4 −1 Fourier eigenfunction in 24 dimensions

Dimension24Negative.gp

\\This program find the -1 Fourier eigenfunction in 24 dimensions.

n=100;
nDisplay=5;

\\Eisenstein series, modular discriminant and 4th power of thetanullwerte functions
q = r ˆ2 ;
E i s en s t e i n (k ) = 1=2*k/ be rn f r a c (k ) *sum(m=1 ,1000 , sigma (m, k=1)*qˆm)+O(qˆn) ;
Discr iminant = ( E i s en s t e i n (4 )ˆ3=E i s en s t e i n (6 ) ˆ2) /1728 ;
Theta004=(sum(m==n , n , r ˆ(mˆ2) ) + O( r ˆ(2*n) ) ) ˆ4 ;
Theta014=(sum(m==n , n ,(=1) ˆm* r ˆ(mˆ2) ) + O( r ˆ(2*n) ) ) ˆ4 ;
Theta104=r *(sum(m==n , n , r ˆ(mˆ2+m) )+O( r ˆ(2*n) ) ) ˆ4 ;
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\\Basis of modular form of weight 14 on Gamma(2).
Bas i s=vecto r (8 ) ;
Bas isS=vecto r (8 ) ;
BasisT=vecto r (8 ) ;
f o r ( i =1 ,8 ,{

Bas i s [ i ]=Theta014 ˆ( i =1)*Theta104ˆ(8= i ) ;
Bas isS [ i ]=(=Theta104 ) ˆ( i =1)*(=Theta014 ) ˆ(8= i ) ;
BasisT [ i ]=Theta004 ˆ( i =1)*(=Theta104 ) ˆ(8= i ) ;

}) ;

\\Equation system
Condit ion=vecto r (8 ) ;
f o r ( i =1 ,8 ,{

Condit ion [ i ]= vec to r (8 ) ;
}) ;
f o r ( i =1 ,8 ,{
\\fS0=0
Condit ion [ 1 ] [ i ]= po l c o e f ( BasisS [ i ] , 0 ) ;
\\fS0.5=0
Condit ion [ 2 ] [ i ]= po l c o e f ( BasisS [ i ] , 1 ) ;
\\fS1=0
Condit ion [ 3 ] [ i ]= po l c o e f ( BasisS [ i ] , 2 ) ;
\\fS1.5=0
Condit ion [ 4 ] [ i ]= po l c o e f ( BasisS [ i ] , 3 ) ;
\\fS2=0
Condit ion [ 5 ] [ i ]= po l c o e f ( BasisS [ i ] , 4 ) ;
\\c=2
Condit ion [ 6 ] [ i ]= po l c o e f ( Bas i s [ i ] , 0 ) ;

}) ;

\\Condition psi(-1/t)+psi(t+1)=psi(t) for the two first coefficients
f o r ( i =7 ,8 ,{

f o r ( j =1 ,8 ,
Condit ion [ i ] [ j ]= po l c o e f ( BasisS [ j ] , i )+po l c o e f ( BasisT [ j ] , i )=po l c o e f ( Bas i s [ j ] , i ) ;

) ;
}) ;

M=matconcat ( [ Condit ion [ 1 ] ; Condit ion [ 2 ] ; Condit ion [ 3 ] ; Condit ion [ 4 ] ; Condit ion [ 5 ] ;
Condit ion [ 6 ] ; Condit ion [ 7 ] ; Condit ion [ 8 ] ] ) ;

A= [0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ] ˜ ;

X=matsolve (M,A) ;

p r i n t f (”\nThe s o l u t i o n o f the system i s : ” ) ;
p r i n t f ( concat (”X=”,X) ) ;

\\Computation of the series of the modular forms
Delta2Ps i=sum( i =1 ,8 ,X[ i ]* Bas i s [ i ] ) ;
Delta2PsiS=sum( i =1 ,8 ,X[ i ]* BasisS [ i ] ) ;
Delta2PsiT=sum( i =1 ,8 ,X[ i ]* BasisT [ i ] ) ;

Ps i=Delta2Ps i /Discr iminant ˆ2 ;
PsiS=Delta2PsiS /Discr iminant ˆ2 ;
PsiT=Delta2PsiT/Discr iminant ˆ2 ;

p r i n t f (”\nThe Four i e r s e r i e s o f p s i ( t ) and p s i (=1/ t ) are ( r=qˆ1/2) : ” ) ;
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p r i n t f ( concat (”\ nps i ( t )=”,Psi+O(qˆnDisplay ) ) ) ;
p r i n t f ( concat (”\ nps i (=1/ t )=”,PsiS+O(qˆnDisplay ) ) ) ;

p r i n t f (”\nThe e r r o r on the equat ion p s i (=1/ t )+ps i ( t+1)=ps i ( t ) i s at most : ” ) ;
p r i n t f ( concat (” p s i (=1/ t )+ps i ( t+1)=p s i ( t )=”,PsiS+PsiT=Psi ) ) ;
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